
Learning Pothole Detection in Virtual Environment

J u n g -C h e n g  T  sai 
Department o f Electronic 

Engineering
National Taipei University o f  

Technology 
T a ip e i, T a iw a n  

t1 0 7 3 6 8 0 0 9 @ n tu t .o rg .tw

K u a n -T in g  L ai 
Department o f Electronic 

Engineering
National Taipei University o f  

Technology 
T a ip e i, T a iw a n  

k t la i@ n tu t.e d u .tw

C h a o -Y u  S iao  
Department o f Electronic 

Engineering
National Taipei University o f  

Technology 
T a ip e i, T a iw a n  

t1 0 8 3 6 8 0 0 2 @ n tu t .o rg .tw

T z i-C h u n  D ai
Department o f Electronic 

Engineering
National Taipei University o f  

Technology 
T a ip e i, T a iw a n  

t1 0 7 3 6 0 7 2 3 @ n tu t .o rg .tw

Y u n g -C h in  H su
Department o f Electronic 

Engineering
National Taipei University o f  

Technology 
T a ip e i, T a iw a n  

t1 0 8 3 6 8 0 1 4 @ n tu t .o rg .tw

J u n - J ia  Su
Department o f Electronic 

Engineering
National Taipei University o f  

Technology 
T a ip e i, T a iw a n  

t1 0 8 3 6 8 0 1 2 @ n tu t .o rg .tw

Abstract—Pothole detection is an important function in 
autonomous vehicles, which can help vehicles to avoid dangerous 
traps on roads, or change suspension to make passengers more 
comfortable. However, it is challenging to train a high quality 
pothole detector, mainly due to the difficulty of collecting training 
data. Sending automobiles with cameras to record videos of 
potholes is time consuming, expensive, and may lead to unexpected 
accidents.

To address this issue, we leverage the recent emerging virtual- 
to-real learning and use latest virtual reality technology to train a 
pothole detector. We develop a pothole generation system that can 
generate holes with various shapes, sizes, and depths. The virtual 
pothole images are added to the training dataset, and the detector 
performance is evaluated on real data. Experiment results show 
that virtual pothole images can successfully increase the overall 
detection accuracy and enable users to train detectors with less 
real data.

Keywords—pothole detection, virtual-to-real learning, deep 
learning

I. In t r o d u c t io n

Autonomous vehicle is one of the most important 
applications in the near future. The key technologies in modern 
autonomous navigation system are computer vision and deep 
learning, which enable onboard computers to recognize 
numerous objects like roads, pedestrians, traffic lights, etc., and 
perform corresponding actions. To achieve best accuracy, we 
need to train specific neural-network detectors for different tasks, 
e.g. object detector, traffic light detector and classifier, scene 
segmentation, to name a few. Modern autonomous system 
usually contains dozens of neural networks that work 
concurrently.

Among many subsystems, pothole detection is an important 
function that have not been fully studied. Potholes are caves or 
hollows in a road surface, usually asphalt pavement, which are
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Fig. 1. Our virtual environment for learning pothole detection, which is based 
on AirSim [1] and VIVID [2].

caused by the water in the underlying soil structure and traffic 
passing over the affected area [3]. The process of pothole 
formation is as follows. Water first weakens the underlying soil, 
and then traffic of vehicles gradually fatigues the poorly 
supported asphalt surface. After a period of time, the ongoing 
traffic action damages both asphalt and the underlying soil and 
creates a hole in the pavement. Small potholes cause vibration 
of vehicles and uncomfortable ride experience, while large 
potholes can lead to serious accidents. If potholes can be 
detected accurately, the autonomous automobiles can change the
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Fig. 2. Flowchart of our system. Rhino 3D is used to create 3D road models 
with various potholes. The models are then imported into Unreal engine, which 
supports plugins such as CarSim for real vehcile simulation.

suspension to absorb the vibration, or even modify the route to 
avoid potential accidents. We expect that pothole detection will 
be an indispensable part of next-generation vehicles.

However, there are not much research about pothole 
detection so far. One of the reasons is that collecting pothole 
images is expensive and time-consuming. Moreover, it is 
difficult to record videos under some climate condition, such as 
raining and snowing. In this paper, we propose to train pothole 
detection using virtual environment. Fig. 1 shows one of the 
scenes in our simulation environment. Our system is based on 
the open-source project AirSim [1] and VIVID [2]. The 
flowchart is illustrated in Fig. 2. In order to generate potholes 
with depths, we use Rhino 3D [4] to create a road model 
containing 3D holes of various shapes and depths. The road 
model is then imported into Unreal engine [5] with AirSim and 
VIVID plugin, which can create random combination of the 
roads with potholes under different weather conditions. We train 
pothole detectors with mix of real and virtual pothole images, 
and evaluate the performance on real photos. Experiment results 
demonstrate that our environment can help to increase the 
accuracy of pothole detection in real world.

II. Re l a t e d  w o r k  

A. Virtual-to-real Learning
Training models in virtual environment and deploying in real 

world is an emerging technique, which is called virtual-to-real 
learning. Specifically, virtual-to-real learning can be considered 
as one kind of the model-based reinforcement learning. 
DeepMind first introduce to combine reinforcement learning 
with deep learning and train agents to play Atari games. The 
proposed Deep Q-Networks (DQN) has achieved human-level 
performance and inspired the frenzy of deep reinforcement 
learning [6]. After that, Pan et al. [7] proposed to train

autonomous vehicle in Unity, claimed that virtual and real 
environments are nearly identical after semantic segmentation. 
Sadeghi and Levine [8] proposed the domain randomization, 
which provides agents numerous randomized environments with 
various colors and textures of objects. The goal is to make AI 
agents think that the real world is just one of the randomized 
environments, and focus on learning the key features. The 
authors successfully train an autonomous drone in CAD 3D 
environment and deployed in real world. Other popular learning 
environments include OpenAI Gym [9], Project Malmo [10], 
DeepDrive [11] and Unity AI [12], to name a few. Recently 
many advanced simulation environments have been proposed. 
Proposed to use AirSim to detect poachers in Africa [13]. There 
are several new released environment for Drone Racing [14], 
Lidar simulation [15], or Robot navigation without map [16].

B. Object Detection
Object detection is one of the most import research topic in 

computer vision. During the past decades, many powerful 
algorithms were proposed, such as R-CNN series [17, 18, 19], 
YOLO series [20, 21, 22], and SSD [23]. The latest detector is 
EfficientDet [24], which train using Neural-network 
Architecture Search (NAS) technique. Among all detector 
technologies, YOLO is currently the most popular one due to 
its simplicity and speed. We choose YOLO v3 as the backbone 
of our pothole detection, and train the detector with mix of real 
and virtual photos.

III. PROPOSED METHOD

In this section, we will present the implementation details of 
our simulation system. First, let us review the basic structure of 
common roads. The cross-sectional view of an asphalt road is 
shown in Fig. 3. Asphalt pavement consists of ten layers. The 
main load bearing is the dense-graded asphalt concrete layer, 
which is also the main layer where the road surface collapses to 
form potholes. Fig. 7 shows the photos of different pothole types. 
The upper-left one is pavement rutting; the upper-right one is 
aggregate losses; the lower-left one is fatigue crack, and the 
lower-right one is pothole repair. If the autonomous vehicle can 
identify the type of a pothole, then it can choose different 
strategies to enhance safety. For example, it can avoid the large 
potholes while changing suspension for small ones. Creating 
potholes in a virtual environment may seem like a trivial task, 
but it is actually difficult. The reason is that most VR 
development tools start with a base plane first, then add 
landscape and other objects on top of the plane.
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Fig. 3. Cross sections of asphalt road.
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As a result, it is easy to add bumps, but hard to make holes on 
the base plane. Most games avoid this issue by using pothole 
textures to pretend holes. However, a texture does not have 
depth information, which is important for advanced pothole 
detection. Therefore, we utilize professional 3D modeling 
software, Rhinoceros 3D, to create pothole models. The process 
is shown in Fig. 4. The first step is to create a surface region. 
The random points are then generated inside the region. Next, 
we generate two pothole circle boundaries, and connect the 
random points inside the circle area. Finally, the depth of the 
hole is created based on the connected points. The visual script 
used to generate Rhino 3D is shown in Fig. 5.

Fig. 7. Different types of potholes. The upper-left one is pavement rutting; the 
upper-right one is aggregate losses; the lower-left one is fatigue crack, and the 
lower-right one is pothole repair. Photo courtesy of [26].

Once the 3D pothole models are ready, the next step is to 
generate the road model. The process is shown in Fig. 6. We first 
create a road grid, which is 5x200 in this case, and randomly 
select pothole locations. Finally, the 3D pothole models are put 
in the locations, and the 3D road model can be imported into 
Unreal engine. Fig. 8 demonstrates the vanilla 3D road model in 
Unreal. To make it photo-realistic, we add texture and other 
materials, as shown in the first page of our paper (Fig. 1).

Fig. 5. Visual script used to generate the potholes in Rhino 3D.

Fig. 6. Process of generating the 3D road model. In this case, we create a road 
grid with 5x200 units, and randomly select the pothole locations.

After importing the potholes and roads, we need to simulate 
the vehicles. There are several Unreal plugins that can perform 
this task. The most popular one is AirSim, which is open-source 
software developed by Microsoft. Originally created for drone 
simulation, AirSim has been widely adopted and support car 
simulation now. Additionally, AirSim provides weather 
condition simulation including raining and snowing. Therefore, 
we also create a pothole model with water for raining condition.

However, AirSim uses the default car model of Unreal, 
which was developed for games and is too simple for 
professional simulation. The alternative solution is CarSim [25],
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which is a commercial software that can simulate a large number 
of vehicle parameters. We have connected our simulation 
system with CarSim, as shown in Fig. 9.

Fig. 9. Connecting CarSim to our pothole simulation environment.

IV. Ex p e r im e n t s

Fig. 10. Several selected photos from the Taiwanese pothole dataset.

We use the mean Average Precision (mAP) as our metric. 
The detection is considered successful if the Intersection over 
Union (IoU) is larger than 0.5. YOLO v3 is employed as our 
neural network model.

For training pothole detector, we combine real photos with 
virtual images and observe the performance change. Specifically, 
we gradually increase the number of real images in the training 
dataset to see the effects of virtual images. The results are shown 
in TABLE II. As can be seen, adding virtual images can improve 
the recognition rate, and reduce the requirement of real images.

One thing to note is that using both virtual potholes with and 
without water as training data may lead to lower accuracy. We 
conjecture that pothole with water should be considered as a new 
class for the model to learn how to classify it precisely. We leave 
it as future work.

We recorded video on roads in Taiwan and created a pothole 
dataset for evaluating our method. Several selected photos are 
shown in Fig. 10. There are around 17,000 labelled potholes in 
the dataset. For training data, we select 15,084 real images, and 
generate 5,417 virtual potholes with water and 5,607 potholes 
without water. In term of testing, we evaluate the detector 
performance on 1,745 real images. TABLE I. lists the number 
of training and test images.

TABLE I. Training and test data

Image Type Number of Images
Training Data

Real photos 15084

Virtual potholes 5607

Virtual potholes with water 5417

Test Data

Real Photos 1745

TABLE II. Experiment results of training pothole detectiors

Number of 
Real Images 
for Training

Mean Average Precision (mAP)

Real Images 
only

Real + Virtual 
Images with 
water (5417)

Real + Virtual 
Images without

water (5607)
1571 77.12% 75.53% 74.29%

3414 86.38% 84.99% 85.33%

4712 91.95% 88.83% 90.18%

6282 90.46% 92.83% 91.27%

7852 91.83% 91.56% 91.31%

9423 91.93% 90.57% 91.12%

10993 92.61% 93.68% 91.29%

12564 92.74% 93.43% 93.70%

14134 92.79% 92.24% 92.93%

15705 92.65% 93.45% 93.62%
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Fig. 11. Comparison of pothole detection accuracy using real photos only, real 
+ Unreal-generated images with water, and real + Unreal-generated images 
without water.

Fig. 12. Precison-recall curves of different real-virtual image combination. The 
solid line represents the best performance in each group.

V. CONCLUSION

In this paper, we developed a new virtual environment for 
training pothole detection. Our system integrates many modern 
VR and simulation techniques, including 3D modeling, VR 
simulation, car simulation, and deep learning interface. We 
conducted many experiments on real pothole dataset, and 
demonstrated that virtual images can indeed increase the 
accuracy of a real pothole detector. For future work, we will try 
deep reinforcement learning with CarSim, and train AI agent to 
learn to automatically adjust car suspension system under 
different road and weather conditions.
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