AND VETER ADD CLARK TRANKS A

AT SAME AND A DESCRIPTION OF A DESCRIPTI

SUMILATED THE ADDING

DER BORNETE IN

MOUSEA HE ERABINES

Marc mane roomin

Charles and a state

Carling Bertranspire of the second

CONTRACTOR OF CARDINE CONTRACTOR

The Grand of Dig Lards to a street

Applied Math for Machine Learning

Prof. Kuan-Ting Lai 2021/10/17

Applied Math for Machine Learning

- Linear Algebra
- Probability
- Calculus
- Optimization

Linear Algebra

Linear Algebra

• Scalar

- real numbers

• Vector (1D)

– Has a magnitude & a direction

• Matrix (2D)

An array of numbers arranges in rows & columns

• Tensor (>=3D)

– Multi-dimensional arrays of numbers

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Real-world examples of Data Tensors

- Timeseries Data 3D (samples, timesteps, features)
- Images 4D (samples, height, width, channels)
- Video 5D (samples, frames, height, width, channels)

Vector Dimension vs. Tensor Dimension

- The number of data in a vector is also called "dimension"
- In deep learning , the dimension of Tensor is also called "rank"
- Matrix = 2d array = 2d tensor = rank 2 tensor

Matrix

• Define a matrix with m rows and n columns:

 $A_{m \times n} \in \mathbb{R}^{m \times n}$

Matrix Operations

Addition and Subtraction

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \quad A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 1 - 5 & 2 - 6 \\ 3 - 7 & 4 - 8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Matrix Multiplication

- Two matrices A and B, where $A \in \mathbb{R}^{m \times n}$ $B \in \mathbb{R}^{p \times q}$
- The columns of A must be equal to the rows of B, i.e. n == p

• A * B = C, where
$$C \in \mathbb{R}^{m \times q}$$

•
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Example of Matrix Multiplication (3-1)

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Example of Matrix Multiplication (3-2)

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Example of Matrix Multiplication (3-3)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix} \checkmark$$

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Matrix Transpose

Dot Product

- Dot product of two vectors become a scalar
- Inner product is a generalization of the dot product
- Notation: $v_1 \cdot v_2$ or $v_1^T v_2$

Outer Product

Or in index notation:

$$(\mathbf{u}\otimes\mathbf{v})_{ij}=u_iv_j$$

https://en.wikipedia.org/wiki/Outer_product

Outer Product for Recommendation System

 Collaborative Filtering can be viewed as outer product of user vectors and item vectors

https://developers.google.com/machine-learning/recommendation/collaborative/basics

Linear Independence

- A vector is **linearly dependent** on other vectors if it can be expressed as the linear combination of other vectors
- A set of vectors v_1, v_2, \dots, v_n is **linearly independent** if $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$ implies all $a_i = 0, \forall i \in \{1, 2, \dots, n\}$

$$\begin{bmatrix} v_1 v_2 \dots v_n \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = 0 \text{ where } v_i \in \mathbb{R}^{m \times 1} \forall i \in \{1, 2, \dots, n\}, \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{R}^{n \times 1}$$

Span the Vector Space

• *n* linearly independent vectors can span *n*-dimensional space

Rank of a Matrix

• Rank is:

The number of linearly independent row or column vectors
The dimension of the vector space generated by its columns

- Row rank = Column rank

Identity Matrix I

- Any vector or matrix multiplied by I remains unchanged
- For a matrix A, AI = IA = A

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3} \qquad Iv = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Inverse of a Matrix

- The product of a square matrix A and its inverse matrix A^{-1} produces the identity matrix I
- $\bullet AA^{-1} = A^{-1}A = I$
- Inverse matrix is square, but not all square matrices has inverses

Pseudo Inverse

- Non-square matrix and have left-inverse or right-inverse matrix
- Example:

 $Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n$

- Create a square matrix $A^T A$

$$A^T A x = A^T b$$

– Multiplied both sides by inverse matrix $(A^T A)^{-1}$

 $x = (A^T A)^{-1} A^T b$

 $-(A^{T}A)^{-1}A^{T}$ is the pseudo inverse function

Special Vectors and Matrices

- Symmetric matrix: $A = A^T$
- Unit vector: $||x||_2 = 1$
- Vector **x** and **y** are orthogonal if $x^T y = 0$ - and if $||x||_2 = 1$ and $||y||_2 = 1 \Rightarrow$ orthonormal

- Orthogonal matrix:
 - A square matrix whose rows and columns are mutually orthonormal

$$A^{T}A = AA^{T} = I$$
$$\implies A^{-1} = A^{T}$$

Norms

- Norm is a measure of a vector's magnitude
- $l_2 \text{ norm}$ $||x||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{1/2} = (x \cdot x)^{1/2} = (x^T x)^{1/2}$
- l_1 norm $||x||_1 = |x_1| + |x_2| + \ldots + |x_n|$
- l_p norm $(|x_1|^p + |x_2|^p + ... + |x_n|^p)^{1/p}$
- l_∞ norm

$$\lim_{p \to \infty} \|x\|_{p} = \lim_{p \to \infty} \left(|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p} \right)^{1/p} = max(x_{1}, x_{2}, \dots, x_{n})$$

Compare I_1 norm and I_2 norm

https://www.slideshare.net/AndresMendezVazquez/03-machine-learning-linear-algebra

Formal Definition of a Norm

- Triangular inequality: $f(x + y) \le f(x) + f(y)$
- Absolute homogeneity: $f(\alpha x) = |\alpha| f(x), \forall \alpha \in \mathbb{R}$
- Positive definiteness: $f(x) = 0 \Rightarrow x = 0$

Eigenvector

• Eigenvector is a non-zero vector that changed by only a scalar factor λ when linear transformation A is applied to:

 $Ax = \lambda x, A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$

where x is an Eigenvector and λ is an Eigenvalue

- Important in machine learning, ex:
 - Principle Component Analysis (PCA)
 - Eigenvector centrality
 - PageRank

— …

Characteristic Polynomial $A\mathbf{v} = \lambda \mathbf{v}, \quad \Rightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0},$

- Calculate Eigenvalues and Eigenvectors of A: $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
- Characteristics polynomial

$$egin{aligned} A-\lambda I \ 1 \ 1 \ 2-\lambda \ 2-\lambda$$

 $\lambda_1 = 1,$ $\lambda_2 = 3$ $\mathbf{v}_{\lambda=1} = \begin{vmatrix} 1 \\ -1 \end{vmatrix},$ $\mathbf{v}_{\lambda=3} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}.$

• Solve the polynomial:

Power Iteration Method for Computing Eigenvector

- Start with random vector v1.
- $\begin{array}{c} A \ V^{k} \stackrel{\sim}{=} \ V^{k} \\ \hline 1 \\ \end{array}$ 2. Calculate iteratively: $v^{(k+1)} = A^k v$
- 3. After v^k converges, $v^{(k+1)} \cong v^k \implies A^k \lor = A^{k-1} \lor$
- 4. v^k will be the Eigenvector with largest Eigenvalue

Example: Shear Mapping

• Horizontal axis is the Eigenvector

 $\mathbf{A} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$

 $(\lambda-1)^2$

 $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Eigenvalues of Geometric Transformations

	Scaling	Unequal scaling	Rotation	Horizontal shear	Hyperbolic rotation
Illustration					
Matrix	$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$	$\left[egin{array}{cc} k_1 & 0 \\ 0 & k_2 \end{array} ight]$	$\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ $c = \cos \theta$ $s = \sin \theta$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$	$egin{bmatrix} c & s \ s & c \end{bmatrix} \ c = \cosh arphi \ s = \sinh arphi \end{cases}$
Characteristic polynomial	$(\lambda-k)^2$	$(\lambda-k_1)(\lambda-k_2)$	$\lambda^2-2c\lambda+1$	$(\lambda-1)^2$	$\lambda^2 - 2c\lambda + 1$
Eigenvalues, λ_i	$\lambda_1 = \lambda_2 = k$	$egin{array}{ll} \lambda_1 = k_1 \ \lambda_2 = k_2 \end{array}$	$egin{aligned} \lambda_1 &= e^{i heta} = c + si \ \lambda_2 &= e^{-i heta} = c - si \end{aligned}$	$\lambda_1 = \lambda_2 = 1$	$egin{aligned} \lambda_1 &= e^arphi = c+s\ \lambda_2 &= e^{-arphi} = c-s \end{aligned}$
Algebraic mult., $\mu_i=\mu(\lambda_i)$	$\mu_1=2$	$egin{array}{l} \mu_1 = 1 \ \mu_2 = 1 \end{array}$	$egin{array}{l} \mu_1 = 1 \ \mu_2 = 1 \end{array}$	$\mu_1=2$	$egin{array}{l} \mu_1 = 1 \ \mu_2 = 1 \end{array}$
Geometric mult., $\gamma_i = \gamma(\lambda_i)$	$\gamma_1=2$	$egin{array}{l} \gamma_1 = 1 \ \gamma_2 = 1 \end{array}$	$egin{array}{l} \gamma_1 = 1 \ \gamma_2 = 1 \end{array}$	$\gamma_1=1$	$egin{array}{l} \gamma_1 = 1 \ \gamma_2 = 1 \end{array}$
Eigenvectors	All nonzero vectors	$\mathbf{u_1} = egin{bmatrix} 1 \ 0 \end{bmatrix} \ \mathbf{u_2} = egin{bmatrix} 0 \ 1 \end{bmatrix}$	$\mathbf{u_1} = egin{bmatrix} 1 \ -i \end{bmatrix} \ \mathbf{u_2} = egin{bmatrix} 1 \ +i \end{bmatrix}$	$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\mathbf{u}_1 = egin{bmatrix} 1 \ 1 \end{bmatrix} \ \mathbf{u}_2 = egin{bmatrix} 1 \ -1 \end{bmatrix}.$

Eigen decomposition

• Let **A** be a square $n \times n$ matrix with *n* linearly independent eigenvectors q_i (where i = 1, ..., n). Then **A** can be factorized as

 $A = Q\Lambda Q^{-1}$

- **Q** is the square $n \times n$ matrix whose *i*th column is the eigenvector q_i of **A**
- Λ is the <u>diagonal matrix</u> whose diagonal elements are the eigenvalues $\Lambda_{ii} = \lambda_i$.

Calculating Eigendecomposition

• Reformulate: $Q^{-1}AQ = \Lambda$

• Suppose
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}$$
, $Q = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\Lambda = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$

• Solve

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix},$$

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

Singular Value Decomposition (SVD)

- Factorize matrix into singular vectors and singular values
- Every real matrix has a SVD

 $A = UDV^T = U\Sigma V^*$

https://en.wikipedia.org/wiki/Singular_value_decomposition

SVD for Recommender System

https://heartbeat.comet.ml/recommender-systems-with-python-part-iii-collaborative-filtering-singular-value-decomposition-5b5dcb3f242b

Principle Component Analysis (PCA)

- Find the important (principle) axes (components)
- Used for Dimensionality Reduction
- Assumptions
 - Linearity
 - Mean and Variance are sufficient statistics
 - The principal components are orthogonal

https://en.wikipedia.org/wiki/Principal component analysis

Face Recognition using Eigenfaces and SVM

predicted: Bush true: Bush

predicted: Bush Bush true:

predicted: Bush Bush true:

predicted: Bush Bush true:

predicted: Bush Bush true:

predicted: Bush

predicted: Blair predicted: Bush Blair true:

true:

eigenface 0

eigenface 1 eigenface 2

eigenface 3

eigenface 7

eigenface 11

predicted: Schroeder predicted: Powell Schroeder Powell eigenface 4 eigenface 5 true: true: predicted: Bush predicted: Bush Bush Bush eigenface 8 eigenface 9 true: true:

eigenface 6

NumPy for Linear Algebra

- NumPy is the fundamental package for scientific computing with Python.
 - -a powerful N-dimensional array object
 - -sophisticated (broadcasting) functions
 - -tools for integrating C/C++ and Fortran code
 - –useful linear algebra, Fourier transform, and random number capabilities

Create Tensors

Scalars (OD tensors) Vectors (1D tensors)

>>> X

1

Matrices (2D tensors)

>>> import numpy as np >> x = np.array(12)>>> x array(12) >>> x.ndim 0

>>> x = np.array([12, 3, 6, 14])>>> x = np.array([[5, 78, 2, 34, 0], [6, 79, 3, 35, 1],[7, 80, 4, 36, 2]]) array([12, 3, 6, 14]) >>> x.ndim >>> x.ndim 2

Create 3D Tensor

```
>>> x = np.array([[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
                  [[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
                  [[5, 78, 2, 34, 0],
                  [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]])
>>> x.ndim
3
```

Attributes of a Numpy Tensor

• Number of axes (dimensions, rank)

- x.ndim

• Shape

- This is a tuple of integers showing how many data the tensor has along each axis

• Data type

- uint8, float32 or float64

Numpy Multiplication

Unfolding the Manifold

- Tensor operations are complex geometric transformation in highdimensional space
 - Dimension reduction

