Applied Math for Machine Learning

Applied Math for Machine Learning

- Linear Algebra
- Probability
- Calculus
- Optimization

Linear Algebra

- Scalar
- real numbers
- Vector (1D)
- Has a magnitude \& a direction

- Matrix (2D)
- An array of numbers arranges in rows \& columns

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

- Tensor (>=3D)
- Multi-dimensional arrays of numbers

Real-world examples of Data Tensors

- Timeseries Data - 3D (samples, timesteps, features)
- Images - 4D (samples, height, width, channels)
- Video - 5D (samples, frames, height, width, channels)

Vector Dimension vs. Tensor Dimension

- The number of data in a vector is also called "dimension"
- In deep learning, the dimension of Tensor is also called "rank"
- Matrix $=2 \mathrm{~d}$ array $=2 \mathrm{~d}$ tensor $=$ rank 2 tensor

Matrix

- Define a matrix with m rows and n columns:

$A_{m \times n} \in \mathbb{R}^{n \times n}$

Matrix Operations

- Addition and Subtraction

$$
\begin{aligned}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \quad A+B & =\left[\begin{array}{ll}
1+5 & 2+6 \\
3+7 & 4+8
\end{array}\right]=\left[\begin{array}{cc}
6 & 8 \\
10 & 12
\end{array}\right] \\
A-B & =\left[\begin{array}{ll}
1-5 & 2-6 \\
3-7 & 4-8
\end{array}\right]=\left[\begin{array}{ll}
-4 & -4 \\
-4 & -4
\end{array}\right]
\end{aligned}
$$

Matrix Multiplication

- Two matrices A and B , where $A \in \mathbb{R}^{m \times n} \quad B \in \mathbb{R}^{p \times q}$
- The columns of A must be equal to the rows of B, i.e. $n==p$
- $\mathrm{A} * \mathrm{~B}=\mathrm{C}$, where $C \in \mathbb{R}^{m \times a}$
- $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$

Example of Matrix Multiplication (3-1)

$$
\begin{array}{r}
\text { "Dot Product" } \quad 1 \times 7+2 \times 9+3 \times 11 \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{l}
1 /
\end{array}\right]}
\end{array}
$$

Example of Matrix Multiplication (3-2)

$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] \times\left[\begin{array}{cc}7 & 8 \\ 9 & 10 \\ 11 & 12\end{array}\right]=\left[\begin{array}{ll}58 & 64\end{array}\right]$

Example of Matrix Multiplication (3-3)

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{cc}
58 & 64 \\
139 & 154
\end{array}\right]
$$

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Matrix Transpose

$$
\begin{gathered}
A \in \mathbb{R}^{m \times n} \quad A^{\mathrm{T}} \in \mathbb{R}^{n \times m} \\
a_{j i}^{\prime}=a_{i j} \quad \forall i \in\{1,2, . . m\}, \forall j \in\{1,2, . . n\}
\end{gathered}
$$

A
A^{\top}

Dot Product

- Dot product of two vectors become a scalar
- Inner product is a generalization of the dot product
- Notation: $v_{1} \cdot v_{2}$ or $v_{1}{ }^{T} v_{2}$

Dot Product in a Matrix

y.shape: (b, c)

Geometric Definition of Dot Product

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

Outer Product

$\mathbf{u} \otimes \mathbf{v}=\mathbf{A}=\left[\begin{array}{cccc}u_{1} v_{1} & u_{1} v_{2} & \ldots & u_{1} v_{n} \\ u_{2} v_{1} & u_{2} v_{2} & \ldots & u_{2} v_{n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m} v_{1} & u_{m} v_{2} & \ldots & u_{m} v_{n}\end{array}\right]$
Or in index notation:

$$
(\mathbf{u} \otimes \mathbf{v})_{i j}=u_{i} v_{j}
$$

Outer Product for Recommendation System

- Collaborative Filtering can be viewed as outer product of user vectors and item vectors

Linear Independence

- A vector is linearly dependent on other vectors if it can be expressed as the linear combination of other vectors
- A set of vectors $v_{1}, v_{2}, \cdots, v_{n}$ is linearly independent if $a_{1} v_{1}+$ $a_{2} v_{2}+\cdots+a_{n} v_{n}=0$ implies all $a_{i}=0, \forall i \in\{1,2, \cdots n\}$

$$
\left[v_{1} v_{2} \ldots v_{n}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
a_{n}
\end{array}\right]=0 \text { where } v_{i} \in \mathbb{R}^{m \times 1} \forall i \in\{1,2, \ldots, n\},\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
a_{n}
\end{array}\right] \in \mathbb{R}^{n \times 1}\left[\begin{array}{cc}
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Span the Vector Space

- n linearly independent vectors can span n-dimensional space

Rank of a Matrix

- Rank is:
- The number of linearly independent row or column vectors
- The dimension of the vector space generated by its columns
- Row rank = Column rank
- Example:

$$
\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

Identity Matrix I

- Any vector or matrix multiplied by I remains unchanged
- For a matrix $A, A I=I A=A$

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

$$
I v=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

Inverse of a Matrix

- The product of a square matrix A and its inverse matrix A^{-1} produces the identity matrix I
- $A A^{-1}=A^{-1} A=I$
- Inverse matrix is square, but not all square matrices has inverses

Pseudo Inverse

- Non-square matrix and have left-inverse or right-inverse matrix
- Example:

$$
A x=b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n}
$$

- Create a square matrix $A^{T} A$

$$
A^{T} A x=A^{T} b
$$

- Multiplied both sides by inverse matrix $\left(A^{T} A\right)^{-1}$

$$
x=\left(A^{T} A\right)^{-1} A^{T} b
$$

- $\left(A^{T} A\right)^{-1} A^{T}$ is the pseudo inverse function

Special Vectors and Matrices

- Symmetric matrix: $A=A^{T}$
- Unit vector: $\|x\|_{2}=1$
- Vector x and y are orthogonal if $x^{T} y=0$
- and if $\|x\|_{2}=1$ and $\|y\|_{2}=1$ => orthonormal

$$
\vec{x} \cdot \vec{y}=|\vec{x}||\vec{y}| \cos \left(90^{\circ}\right)=0
$$

- Orthogonal matrix:
- A square matrix whose rows and columns are mutually orthonormal

$$
\begin{gathered}
A^{T} A=A A^{T}=I \\
A^{-1}=A^{T}
\end{gathered}
$$

Norms

- Norm is a measure of a vector's magnitude
- l_{2} norm

$$
\|x\|_{2}=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}\right)^{1 / 2}=(x \cdot x)^{1 / 2}=\left(x^{T} x\right)^{1 / 2}
$$

- l_{1} norm

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|
$$

- l_{p} norm

$$
\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

- l_{∞} norm

$$
\lim _{p \rightarrow \infty}\|x\|_{p}=\lim _{p \rightarrow \infty}\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Compare I_{1} norm and I_{2} norm

Formal Definition of a Norm

- Triangular inequality: $\quad f(x+y) \leq f(x)+f(y)$
- Absolute homogeneity: $f(\alpha x)=|\alpha| f(x), \forall \alpha \in \mathbb{R}$
- Positive definiteness: $f(x)=0 \Rightarrow x=0$

Eigenvector

- Eigenvector is a non-zero vector that changed by only a scalar factor λ when linear transformation A is applied to:

$$
A x=\lambda x, A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}
$$

where x is an Eigenvector and λ is an Eigenvalue

- Important in machine learning, ex:
- Principle Component Analysis (PCA)
- Eigenvector centrality
- PageRank
- ...

Characteristic Polynomial

$$
\text { not invertible } \Rightarrow \operatorname{det}(A-\lambda I)
$$

$$
A \mathbf{v}=\lambda \mathbf{v}, \Rightarrow(A-\lambda I) \mathbf{v}=\mathbf{0}
$$

- Calculate Eigenvalues and Eigenvectors of A :

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

- Characteristics polynomial

$$
\begin{gathered}
|A-\lambda I|=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & ぬ_{2}-\lambda
\end{array}\right|=3-4 \lambda+\lambda^{2} . \\
(2-\lambda)^{2}-1
\end{gathered}
$$

- Solve the polynomial: $\begin{aligned} & \lambda_{1}=1, \\ & \lambda_{2}=3\end{aligned} \Rightarrow \mathbf{v}_{\lambda=1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \quad \mathbf{v}_{\lambda=3}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Power Iteration Method for Computing Eigenvector

1. Start with random vector v
2. Calculate iteratively: $v^{(k+1)}=A^{k} v$ $A V^{k} \cong V^{k}$
3. After v^{k} converges, $v^{(k+1)} \cong v^{k} \Rightarrow A^{k} V=A^{k-1} V$
4. v^{k} will be the Eigenvector with largest Eigenvalue

Example: Shear Mapping

- Horizontal axis is the Eigenvector

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right] \\
(\lambda-1)^{2} \\
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{gathered}
$$

Eigenvalues of Geometric Transformations

$\left.\begin{array}{|c|c|c|c|c|c|}\hline & \text { Scaling } & \text { Unequal scaling } & \text { Rotation } & \text { Horizontal shear } & \text { Hyperbolic rotation } \\ \hline \text { Illustration } & {\left[\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right]} & {\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]} & {\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right]} \\ c=\cos \theta \\ s=\sin \theta\end{array}\right]$

Eigen decomposition

- Let A be a square $n \times n$ matrix with n linearly independent eigenvectors $q_{i}($ where $i=1, \ldots, n)$. Then \mathbf{A} can be factorized as

$$
A=Q \Lambda Q^{-1}
$$

- \mathbf{Q} is the square $n \times n$ matrix whose i th column is the eigenvector q_{i} of \mathbf{A}
- Λ is the diagonal matrix whose diagonal elements are the eigenvalues $\Lambda_{i j}=\lambda_{i}$.

Calculating Eigendecomposition

- Reformulate: $\quad Q^{-1} A Q=\Lambda$
- Suppose

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 3
\end{array}\right], Q=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \Lambda=\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]
$$

- Solve

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 0 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]
$$

Singular Value Decomposition (SVD)

- Factorize matrix into singular vectors and singular values
- Every real matrix has a SVD

$$
A=U D V^{T}=U \Sigma V^{*}
$$

SVD for Recommender System

Principle Component Analysis (PCA)

- Find the important (principle) axes (components)
- Used for Dimensionality Reduction
- Assumptions
- Linearity
- Mean and Variance are sufficient statistics
- The principal components are orthogonal

Face Recognition using Eigenfaces and SVM

predicted: Bush

predicted: Bush true: Bush

predicted: Bush

predicted: Bush true: Bush

predicted: Schroeder

predicted: Bush
true: Bush

predicted: Powell

predicted: Bush
true: Bush

eigenface 4

eigenface 5

NumPy for Linear Algebra

- NumPy is the fundamental package for scientific computing with Python.
-a powerful N-dimensional array object
-sophisticated (broadcasting) functions
-tools for integrating C/C++ and Fortran code
-useful linear algebra, Fourier transform, and random number capabilities

Create Tensors

Scalars (OD tensors) Vectors (1D tensors) Matrices (2D tensors)

```
>>> import numpy as np
>>> x = np.array(12)
>>> x
array(12)
>>> x.ndim
0
```

```
>>> x = np.array([12, 3, 6, 14])
>>> x
array([12, 3, 6, 14])
>>> x.ndim
1
```

```
>>> x = np.array([[5, 78, 2, 34, 0],
    [6, 79, 3, 35, 1],
    [7, 80, 4, 36, 2]])
>>> x.ndim
2
```


Create 3D Tensor

```
>>> x = np.array([[[5, 78, 2, 34, 0],
    [6, 79, 3, 35, 1],
    [7, 80, 4, 36, 2]],
    [[5, 78, 2, 34, 0],
    [6, 79, 3, 35, 1],
    [7, 80, 4, 36, 2]],
    [[5, 78, 2, 34, 0],
    [6, 79, 3, 35, 1],
    [7, 80, 4, 36, 2]]])
>>> x.ndim
3
```


Attributes of a Numpy Tensor

- Number of axes (dimensions, rank)
-x.ndim
- Shape
- This is a tuple of integers showing how many data the tensor has along each axis
- Data type
- uint8, float32 or float64

Numpy Multiplication

```
In [ ]: M import numpy as np
```

```
In [4]: M }\begin{array}{l}{\textrm{x}=\textrm{n}=\textrm{m}.\operatorname{array([[1, 2, 3], [4, 5, 6]])}}
```

 Out[4]: \(\operatorname{array}([[1,2,3]\),
 \([4,5,6]])\)
 In [5]: M ${ }_{y}^{\mathrm{y}}=\mathrm{np} . \operatorname{array}([[7,8],[9,10],[11,12]])$
Out[5]: $\operatorname{array}([[7,8]$,
[9, 10],
$[11,12]])$

In [10]: M np.matmul(x, y)
Out[10]: $\operatorname{array}([[58,64]$,
$[139,154]])$

Unfolding the Manifold

- Tensor operations are complex geometric transformation in highdimensional space
- Dimension reduction

