e
ot ¢

R
» .

1
- .
Y g parEE

Mty
Y st ampesit
PSR LU s VAN
vrano et D 1)

SRV ’
T onied NP ek
AL AUTENL T A

.o
70 PR AAAEL LN LR

TN SNy N
SOTATED 1L

BT
bl A% FETTIOWTL A
LR FANS Lami e
L L T "I ise
LARTLEES [T
P ¢
S e)
.',. S LR
-
", LT TR e
’
e LTI
. g .
.\.r-cyl,",..: » g

L] "'l--‘
N

DeepFake (Intro)

https://www.youtube.com/watch?v=T76bK2t2r8g

This Person does not Exist (thispersondoesnotexist.com)

https://thispersondoesnotexist.com/

What is a Generative Model?

* Informally:
« Generative models can generate new data instances.
 Discriminative models discriminate between different kinds of data
instances.
* Formally

 Generative models capture the joint probability p(X, Y), or just p(X) if
there are no labels.

« Discriminative models capture the conditional probability p(Y | X).

https://developers.google.com/machine-learning/gan

https://developers.google.com/machine-learning/gan

Generative Models Are Hard

* Discriminative Model

p(y|x)

* Generative Model

p(z,y)
X
g //'w' -------- y=20
f"~\‘

https://developers.google.com/machine-learning/gan/generative

https://developers.google.com/machine-learning/gan/generative

Generative Recurrent Networks

* Douglas Eck (2002), Music Generation using LSTM

* Alex Graves, “Generating Sequences With Recurrent Neural
Networks,” arXiv (2013), https://arxiv.org/abs/1308.0850.

https://arxiv.org/abs/1308.0850

Text Generation with LSTM

Probability
distribution for the Sampled next
Initial text Initial text next character character

The cat sat on the m — Language _,| Sampling
model I . strategy

]_~ a

'/ Language Sampling
The cat sat on the ma — I . — t
[J

model strategy

Sampling Strategy

* Greedy sampling: select the one with highest possibility
 Stochastic sampling
* More randomness -> more surprises

Temperature

* Reweighting a probability distribution

import numpy as np

def reweight distribution(original distribution, temperature=0.5):
distribution = np.log(original distribution) / temperature
distribution = np.exp(distribution)
return distribution / np.sum(distribution)

Higher Temperature = More Randomness

Probability of sampling element

temperature = 0.01

L

temperature = 0.2

temperature = 0.4

Ry

Rl ’ . .

Discrete elements (characters)

temperature = 0.6

temperature = 0.8

temperature = 1.0

Generating Text of Nietzsche

e That which does not kill us makes us stronger.
* Man is the cruelest animal.

* Sometimes people don’t want to hear the truth
because they don’t want their illusions
destroyed.

e The true man wants two things: danger and
play. For that reason he wants woman, as the
most dangerous plaything.

Character-level LSTM Text Generation

 Download training data

* Things to note:
— At least 20 epochs are required before the generated text starts sounding coherent.

— If you try this script on new data, make sure your corpus has at least ~100k
characters. “1M is better.

import keras
import numpy as np

path = keras.utils.get file(
'nietzsche.txt’,
origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt")
text = open(path, encoding="utf-8").read().lower()
print('Corpus length:', len(text))

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lIstm.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lstm.ipynb

Convert Characters into Indices

* 57 unique characters in the data

chars = sorted(list(set(text)))

print('total chars:', len(chars))

char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))

le> python .\Istm_text_generation.py
ault/dso_loader.cc:44] Successfully opened dynamic library cudart64

Vectorizing Sequences of Characters

You'll extract sequences
of 60 characters.
maxlen = 60]
You’ll sample a new sequence

step = 3 4 every three characters.

sentences = [] <+—— Holds the extracted sequences

next_chars = [] = Holds the targets (the
for i in range(0, len(text) - maxlen, step): follow-up characters)

sentences.append(text[i: i1 + maxlen]) . .
List of unique characters

next_chars.append (text[i + maxlen]) in the corpus

print ('Number of sequences:', len(sentences)) Dictinnar}' that maps

chars = sorted(list(set(text))) S — u"_ique cparECt?rs to their
index in the list “chars”

print ('Unique characters:', len(chars))

char indices = dict((char, chars.index(char)) for char in chars) =«

print ('Vectorization...')
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)

v = np.zeros((len(sentences), len(chars)), dtype=np.bool)

for i, sentence in enumerate(sentences): One-hot encodes
the characters

for t, char in enumerate(sentence): . .
into blnary arrays

x[1, t, char indices[char]] = 1

v[i, char_indices[next_chars[i]]] = 1

Building the Network

from keras import layers

model = keras.models.Sequential()

model.add(layers.LSTM(128, input shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss="'categorical crossentropy', optimizer=optimizer)

Training & Sampling the Language Model

1. Drawing from the model a probability distribution over the
next character given the text available

2. Reweighting the distribution to a certain "temperature”

3. Sampling the next character at random according to the
reweighted distribution

4. Adding the new character at the end of the available text

Sampling Next Characters

def sample(preds, temperature=1.0):
preds = np.asarray(preds).astype('float64d")
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1l, preds, 1)
return np.argmax(probas)

Text-generation Loop

import random

import sys qJ Trains the model for 60 epochs

for epoch in range(l, 60): Fits the model for one iteration
print('epoch', epoch) J on the data
model.fit(x, v, batch size=128, epochs=1l) <
start_index = random.randint (0, len(text) - maxlen - 1) Selects a text
generated_text = text[start_index: start_index + maxlen] seed at
print ('-—-- Generating with seed: "' + generated_text + '"') random
for temperature in [0.2, 0.5, 1.0, 1.2]: . Tries a range of different

print('-————- Cemperature: ', temperature) sampling temperatures

sys.stdout.wrlte(generated_ text)

Text-generation Loop (Cont’d)

Generates 400 —+ for 1 in range(400):

characters, sampled = np.zeros((1l, maxlen, len(chars))) One-hot encodes
starting from for t, char 1n enumerate(generated text) : the characters
the seed text sampled[0, t, char_indices[char]] = 1. generated so far
preds = model.predict (sampled, verbose=0)[0] Samples
next_index = sample(preds, temperature) the next
next char = chars[next index] character

generated_text += next_char
generated_text = generated_text[1l:]

sys.stdout.write(next_char)

Results of Epoch 60

Epoch 60/60

199936/200285 [============================>] - ETA: Os - loss: 1.2384

----- Generating text after Epoch: 59

----- diversity: 0.2

----- Generating with seed: "ange an opinion about any one, we charge"

ange an opinion about any one, we charger and the sense of the factity of the sense of the sense of the
continuation of the sense of the sense of the heart and superstitions, and in the sense of the sense of the
most spirit of the sense of the sense of the sense of the most portentous and as the sense of the sense of the
sense of the sense of the heart and self-distrust of the sense of the sense of the sense of the sense of the
sense of

----- diversity: 0.5

————— Generating with seed: "ange an opinion about any one, we charge"

ange an opinion about any one, we charges and contempleting and self-delight and in the sensive reports in
the portent and morality of the sense of a fainh purpose of the effective century and that struckon and be
conceptions and disposition of them as the sense of the fact that is the sense. the most foreign and the best
and

who has almost science in the people more secret to the survivaling some man the belief in the other hand

Use TensorFlow DeepDream Example

* The original keras code are not executable for TensorFlow 2
 https://www.tensorflow.org/tutorials/generative/deepdream

1F TensorFlow Install Learnv APlw Resources v Community Why TensorFlow v Q_ search English ~ GitHub Signin

TensorFlow > Learn > TensorFlow Core > Tutorials Rate and review % 5]

TensorFlow tutorials Table of contents

Quickstart for beginners D D Choose an image to dream-ify

Quickstart for experts eep rea m Prepare the feature extraction model
Calculate loss

BEGINNER Gradient ascent

A Run in Google Colab Q View source on GitHub ¥ Download notebook Main Loop

ML basics with Keras v —
Taking it up an octave

Load and preprocess data v Optional: Scaling up with tiles

This tutorial contains a minimal implementation of DeepDream, as described in this blog post by Alexander Mordvintsev.

BONANCED DeepDream is an experiment that visualizes the patterns learned by a neural network. Similar to when a child watches
Customization “ clouds and tries to interpret random shapes, DeepDream over-interprets and enhances the patterns it sees in an image.
o = It does so by forwarding an image through the network, then calculating the gradient of the image with respect to the
Distributed training h activations of a particular layer. The image is then modified to increase these activations, enhancing the patterns seen

by the network, and resulting in a dream-like image. This process was dubbed “Inceptionism" (a reference to
Images h InceptionNet, and the movie Inception).
Text v Let's demonstrate how you can make a neural network "dream” and enhance the surreal patterns it sees in an image.
Audio v
Structured data v
Generative ~

Neural style transfer
DeepDream

DCGAN

Pix2Pix

CycleGAN

Adversarial FGSM

Intro to Autoencoders
Variational Autoencoder

Model Understanding v

Reinforcement learning v

https://www.tensorflow.org/tutorials/generative/deepdream

Implementing DeepDream in Keras

from keras.applications import inception_ w3 You won’t be training the model. so
. ¥

trom keras 1mport backend as K this command disables all training-

K.set_learning phase(0) . specific operations.

model = inception v3.InceptionV3 (weights='imagenet', Builds the Inception Y3 network,

include top=False) without its convolutional base.
The model will be loaded with

pretrained ImageNet weights.

Configuring DeepDream

laye%" —“:Dﬂtrfbumaﬂg =1 < Dictionary mapping layer names to a coefficient quantifying
lm%xe‘j‘? - 0.2, how much the layer’s activation contributes to the loss
m‘lxe‘ﬂ RN you’ll seek to maximize. Note that the layer names are
-m%;{ed.g 't 2., hardcoded in the built-in Inception V3 application. You can
'‘'mixed>': 1.5, list all layer names using model.summary().

Define the Loss

* Loss = the weighted sum of the square of the layer activations

Get the symbolic outputs of each "key" layer (we gave them unique names).
layer _dict = dict([(layer.name, layer) for layer in model.layers])

Define the loss.
loss = K.variable(©.)

for layer _name in layer contributions:
Add the L2 norm of the features of a layer to the loss.
coeff layer_ contributions[layer name]
activation = layer_dict[layer name].output

We avoid border artifacts by only involving non-border pixels in the loss.
scaling ~ K.prod(K.cast(K.shape(activation), 'float32"))

loss.assign _add(coeff K.sum(K.square(activation[:, : , 2% > 1)) scaling)

Note assign add() is +=. In Keras 2.3.1, Variable += value not supported.

Create Gradients

This holds our generated image
dream -~ model.input

Compute the gradients of the dream with regard to the loss.
grads ~ K.gradients(loss, dream)[7]

Normalize gradients.
grads K.maximum(K.mean(K.abs(grads)),)

Set up function to retrieve the value

of the loss and gradients given an input image.
outputs [loss, grads]

fetch _loss _and grads = K.function([dream], outputs)

Gradient-ascent Process

def

def

eval loss and grads(x):

outs = fetch loss _and grads([x])
loss value = outs[9]

grad values = outs[1]

return loss value, grad values

gradient ascent(x, iterations, step, max_loss=None):
for i in range(iterations):
loss _value, grad values = eval loss _and _grads(x)
if max_loss is not None and loss value > max_loss:
break
print('...Loss value at', i,
X += step * grad values
return x

:', loss_value)

DeepDream Process: Scaling and Detail Reinjection

|
|

Detail
Detail reinjection
reinjection

Octave 2 N
Octave 3

Running Gradient Ascent over Different Successive
Scales

Playing with these hyperparameters Gradient ascent step size

will let you achieve new effects.

%

Number of scales at which to run

, gradient ascent
import numpy as np

step = 0.01 » Size ratio between scales

num_octave = 3 <1 Number of ascent steps to

octave_scale = 1.4 < run at each scale

iterations = 20 h If the loss grows larger than 10, you'll interrupt
max 1loss = 10. 4 the gradient-ascent process to avoid ugly artifacts.
base image path = '...' <—— Fill this with the path to the image you want to use.

img = preprocess_image(base_image path) Loads the base image into a Numpy

array (function is defined in listing 8.13)

original_ shape = img.shapel[l:3]

successive_shapes = [original_shape] Frepares a list of shape

tuples defining the different
scales at which to run
gradient ascent

for i in range(l, num_octave):
shape = tuple([int(dim / (octave_scale ** 1))
for dim in original_shape])
successive_shapes.append (shape)

Reverses the list of

successive_shapes = successive_shapes[::-1] fh3F95f°thEYWEi"
increasing order
original img = np.copy(img)
shrunk_original img = resize_img(img, successive_shapes([0])
Scales up
the for shape in successive_shapes: Resizes the N_”"‘PT
(-iream print ('Processing image shape', shape) array of the image
image img = resize img(img, shape) to the smallest scale
img = gradient_ascent (img,
R di iterations=iterations Scales up the smaller
uns g"la lent ctep—ste ' version of the original
ascent, altering P P image: it will be pixellated.
the dream max_ loss=max_loss)

upscaled shrunk original img = resize img(shrunk original img, shape)
I same_size original = resize_ img(original_img, shape)
lost_detail = same_size original - upscaled_shrunk original_img =t——r

img += lost_detail <}
shrunk original img = resize_img(original_ img, shape)

save_img(img, fname='dream_at_scale ' + str(shape) + '.png')

save img(img, fname='final dream.png')
Reinjects lost detail into the dream

Computes the high-quality version
of the original image at this size

The difference between the two is the
detail that was lost when scaling up.

-~

g WY] (_\',m:1.~’ "
'; - — - —
i

v ha o ¥
L

Neural Style Transfer

* Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural
Algorithm of Artistic Style,” arXiv (2015), https://arxiv.org/abs/1508.06576 .

Content target Style reference Combination image

https://arxiv.org/abs/1508.06576

Prisma Photo Editor [iz2+]
Art Filters & Photo Effects
Prisma labs, inc.

4.7, 95.5K Ratings

Free . Offers In-App Purchases

Screenshots iphone ipad

Turn photos 300+ filters Adjust to New filters
into art available perfection released daily

ey

LN

| A
RE. &

Style Reconstructions 1o

o Style u

Representations

* ‘convl 1’ (a),
‘conv2 1’ (b),
‘conv3 1’ (c),
‘conv4d 1’ (d) e L> |
lconVS 1’ (e) [ge Content
O.I: th e VGG 16_ Representations
network

Content Reconstructions

Conv layer

T

Conv layer

!

Conv layer

Content
image

Content loss

_»O::

Conv layer

Ly

Conv layer

K

Conv layer

Conv layer
Style loss T
:04— Conv layer
Style loss T
::04— Conv layer

I
I
\J

Composite
image

https://d2l.ai/chapter computer-vision/neural-style.html

Total variation loss

https://d2l.ai/chapter_computer-vision/neural-style.html

Content Loss + Style Loss

e Using pre-trained model (VGG)

o A
Content Loss r T = EZ (Fl B Pl)'2 P is output of original image
content (D, L', 1) = 9 tj tj F is output of random noise

2 4=
* The style representations are the correlations between different
convolution layers

e Correlation is calculated by Gram matrix

1 N2 oo
by = 43,-}23[{2 Z (Gi} o Aéj) Lstyle(a. T) = Z Wik

i ' =0

ﬁtami(_*) — accuntent(]F _'*) dﬁstyie({_f F)

Style Transfer in TensorFlow Tutorial

e https://www.tensorflow.org/tutorials/generative/style transfer

* Note that modern approaches train a model to generate the stylized
image directly (like CycleGAN) and are much faster (up to 1000x)

TensorFlow Core

Overview Tutorials Guide TF1 7

TensorFlow tutorials

Quickstart for beginners

Google I/0 returns May 18-20! Reserve space and build your schedule Register now

Quickstart for experts

BEGINNER

TensorFlow > Learn » TensorFlow Core > Tutorials Rate and review |f7 g:l
ML basics with Keras v

Neural style transfer
Load and preprocess data v
ADVANCED

Run in Google Colab o View on GitHub ¥ Download notebook e See TF Hub model

Customization v
Distributed training v This tutorial uses deep learning to compose one image in the style of another image (ever wish you could paint like

Picasso or Van Gogh?). This is known as neural style transfer and the technique is outlined in A Neural Algorithm of
Images v Artistic Style [(Gatys et al.).
Text v

v Note: This tutorial demonstrates the original style-transfer algorithm. It optimizes the image content to a particular style. Modern

approaches train a model to generate the stylized image directly (similar to cyclegan). This approach is much faster (up to 1000x).
Audio v

https://www.tensorflow.org/tutorials/generative/style_transfer

Fast Style Transter using TF-Hub

import tensorflow_hub as hub
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2")
stylized image = hub_model(tf.constant(content_image), tf.constant(style image))[9]

tensor_to_image(stylized image)

Content Image

100

200

300

400

500

Get the Style and Content Images

style path = tf.keras.utils.get file('kandinsky5.jpg', "https://storage.googleapis.
com/download.tensorflow.org/example images/Vassily Kandinsky%2C 1913 -
_Composition 7.jpg’)

content_image = load _img('./img/kt photo2.jpg')
style image = load img(style path)

plt.subplot(1, 2, 1)

imshow(content _image, 'Content Image')
plt.subplot(1l, 2, 2)

imshow(style image, 'Style Image')

Content Image

Get Pre-trained VGGI19

e load a VGG19 without the classification head,
and list the layer names

vgg = tf.keras.applications.VGG19(include top=False,
weights="imagenet’)

vgg.summary()

Model: "vggl9"

Layer (type) Output Shape Param #

input_2 (InputLayer) [(None, None, None, 3)] ©

blockl_convl (Conv2D) (None, None, None, 64) 1792

blockl_conv2 (Conv2D) (None, None, None, 64) 36928

blockl_pool (MaxPooling2D) (None, None, None, 64) ©

block2_convl (Conv2D) (None, None, None, 128) 73856

block2_conv2 (Conv2D) (None, None, None, 128) 147584

block2_pool (MaxPooling2D) (None, None, None, 128) ©

block3_convl (Conv2D) (None, None, None, 256) 295168

block3 conv2 (Conv2D) (None, None, None, 256) 590080

block3 conv3 (Conv2D) (None, None, None, 256) 590080

block3 conv4 (Conv2D) (None, None, None, 256) 590080

block3_pool (MaxPooling2D) (None, None, None, 256) ©

block4_convl (Conv2D) (None, None, None, 512) 1180160

block4_conv2 (Conv2D) (None, None, None, 512) 2359808

block4_conv3 (Conv2D) (None, None, None, 512) 2359808

block4_conv4 (Conv2D) (None, None, None, 512) 2359808

block4_pool (MaxPooling2D) (None, None, None, 512) ©

block5_convl (Conv2D) (None, None, None, 512) 2359808

block5_conv2 (Conv2D) (None, None, None, 512) 2359808

block5_conv3 (Conv2D) (None, None, None, 512) 2359808

block5_conv4 (Conv2D) (None, None, None, 512) 2359808

block5_pool (MaxPooling2D) (None, None, None, 512) ©

Select Intermediate Layers

* Choose intermediate layers from the network to represent the style
and content of the image

content_layers = ['block5 conv2']

style layers = ['blockl convl’
"block2 convl'
"block3 convl'
"block4 convl'
"block5 convl'

el ‘e o o >

num_content layers = len(content layers)
num_style layers = len(style layers)

Build a Model with Intermediate Layer Outputs

def vgg layers(layer _names):
" Creates a vgg model that returns a list of intermediate output values."""
Load our model. Load pretrained VGG, trained on imagenet data
vgg = tf.keras.applications.VGG19(include top=False, weights='imagenet')
vgg.trainable = False

outputs = [vgg.get layer(name).output for name in layer names]

model = tf.keras.Model([vgg.input], outputs)
return model

Process the Style Image

style _extractor = vgg layers(style layers)
style outputs = style extractor(style image*255)

#Look at the statistics of each layer's output

for name, output in zip(style layers, style outputs):
print(name)
print(" shape: ", output.numpy().shape)
print(" min: ", output.numpy().min())

print(" max: ", output.numpy().max())

print(" mean: ", output.numpy().mean())
print()

blockl convl X 336, 512, 64) min: 0.0 max: 835.5256 mean: 33.97525
block2 convl X 168, 256, 128) min: 0.0 max: 4625.8857 mean: 199.82687
block3 convl X 84, 128, 256) min: 0.0 max: 8789.239 mean: 230.78099

block4 convl : 42, 64, 512) min: 0.0 max: 21566.135 mean: 791.24005
block5 convl X 21, 32, 512) min: 0.0 max: 3189.2542 mean: 59.179478

Calculate the Style

* Style can be described by the means and correlations across the different
feature maps.

* Calculate a Gram matrix by taking the outer product of the feature vector
with itself at each location and averaging that outer product over all

locations.
2 ij ELC (z)F, ;:rfd ()
1J

I
ch

def gram matrix(input_tensor):
result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_ tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[l]*input _shape[2], tf.float32)
return result/(num_locations)

StyleContentModel

* Build a model that returns the style and content tensors.

class StyleContentModel (tf.keras.models.Model):
def init (self, style layers, content layers):

super(StyleContentModel, self). init ()
self.vgg = vgg layers(style layers + content layers)
self.style layers = style layers
self.content _layers = content_layers
self.num_style layers = len(style layers)
self.vgg.trainable = False

def call(self, inputs):

class StyleContentModel (tf.keras.models.Model):
def init (self, style layers, content layers):

def call(self, inputs):
"Expects float input in [0,1]"
inputs = inputs*255.0
preprocessed input = tf.keras.applications.vggl9.preprocess input(inputs)
outputs = self.vgg(preprocessed input)
style outputs, content outputs = (outputs[:self.num style layers],
outputs[self.num style layers:])

style outputs = [gram _matrix(style output)
for style output in style outputs]

content _dict = {content _name: value
for content _name, value
in zip(self.content_layers, content outputs)}

style dict = {style name: value
for style name, value

in zip(self.style layers, style outputs)}

return {'content': content dict, 'style': style dict}

Define Style + Content Loss Function

def style content loss(outputs):
style outputs = outputs['style']
content_outputs = outputs['content']
style loss = tf.add n([tf.reduce_mean(
(style outputs[name] - style targets[name])**2)
for name in style outputs.keys()])
style loss *= style weight / num_style layers

content_loss = tf.add n([tf.reduce_mean(
(content_outputs[name] - content targets[name])**2)
for name in content outputs.keys()])

content_loss *= content _weight / num_content layers

loss = style loss + content_loss

return loss

extractor = StyleContentModel(style layers, content_layers) .
style targets = extractor(style_image)['style’] R un g I'a d IS nt

content_targets = extractor(content _image)['content']
descent

image = tf.Variable(content image)

def clip @ 1(image):
return tf.clip_ by value(image, clip value min=0.0, clip value max=1.0)

opt = tf.optimizers.Adam(learning rate=0.02, beta 1=0.99, epsilon=le-1)

style weight=1e-2
content_weight=1e4

Use tf.GradientTape to update the image.
@tf.function()
def train step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style content loss(outputs)

grad = tape.gradient(loss, image)
opt.apply gradients([(grad, image)])
image.assign(clip @ 1(image))

Test Results

train_step(image)
train_step(image)
train_step(image)
tensor_to_image(image)

Generating Images with Variational Auto-encoder

_+ Training data

. - -{ Generator / Decoder m

Vector from the .v‘-"}rtifi::ial
Latent space latent space image

of images
(a vector space)

The Smile Vector

Auto-encoder

* Learn compressed representation of input x

A -

Original
input x

Encoder

EE

Compressed
representation

Decoder

—

Reconstructed

input x

Variational Auto-encoder

* Assume images are generated by a statistical process
 Randomness of this process is considered during encoding and decoding

deep-learning-with-python-notebooks/chapter12 part04 variational-autoencoders.ipynb at master - fchollet/deep-learning-with-python-notebooks - GitHub

Distribution over latent
space defined by z_mean
Input image and z_log_var

: —-[Encoder J—»
Reconstructed

l image

(-2

Point randomly
sampled from
the distribution

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part04_variational-autoencoders.ipynb

Pseudo Code of Encode and Decoder

Encode the input into a mean and variance parameter
Z_mean, z_log variance = encoder(input_img)

Draw a latent point using a small random epsilon
z = z_mean + exp(z_log variance) * epsilon

Then decode z back to an image
reconstructed img = decoder(z)

Instantiate a model
model = Model(input _img, reconstructed img)

Then train the model using 2 losses:
a reconstruction loss and a regularization loss

import tensorflow.compat.vl as tf
tf.disable v2 behavior()

import keras

from keras import layers

from keras import backend as K
from keras.models import Model
import numpy as np

img shape = (28, 28, 1)
batch_size = 16

latent _dim = 2 # Dimensionality of the latent space:

input img = keras.Input(shape=img_ shape)
x = layers.Conv2D(32, 3, padding='same',
x = layers.Conv2D(64, 3, padding='same’,
x = layers.Conv2D(64, 3, padding='same’,
x = layers.Conv2D(64, 3, padding='same’,
shape before flattening = K.int_shape(x)

x = layers.Flatten()(x)
X

z mean = layers.Dense(latent_dim)(x)
z log var = layers.Dense(latent _dim)(x)

activation=
activation=
activation=
activation=

layers.Dense(32, activation='relu')(x)

Encoder

a plane

'relu’)(input img)

‘relu’, strides=(2, 2))(x)
"relu’) (%)

‘relu’)(x)

Sampling

* In Keras, everything needs to be a layer, so code that isn't part of a built-
in layer should be wrapped in a Lambda (or else, in a custom layer).

def sampling(args):
z mean, z_log var = args
epsilon = K.random normal(shape=(K.shape(z_mean)[@], latent dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log var) * epsilon

z = layers.Lambda(sampling)([z_mean, z_log var])

Decoder

This is the input where we will feed "z .
decoder_input = layers.Input(K.int shape(z)[1:])

Upsample to the correct number of units
x = layers.Dense(np.prod(shape_before flattening[1:]), activation='relu')(decoder_input)

Reshape into an image of the same shape as before our last Flatten layer

x = layers.Reshape(shape_before flattening[1:])(x)

We then apply then reverse operation to the initial stack of convolution layers:

a Conv2DTranspose layers with corresponding parameters.

x = layers.Conv2DTranspose(32, 3, padding='same', activation='relu', strides=(2, 2))(x)
x = layers.Conv2D(1, 3, padding='same', activation='sigmoid') (x)

This is our decoder model.
decoder = Model(decoder input, x)

We then apply it to "z° to recover the decoded "z .
z _decoded = decoder(z)

class CustomVariationallayer(keras.layers.Layer):

def vae loss(self, x, z decoded):
x = K.flatten(x)
z decoded = K.flatten(z decoded)
xent_loss = keras.metrics.binary_ crossentropy(x, z decoded)
kl loss = -5e-4 * K.mean(
1 + z log var - K.square(z_mean) - K.exp(z_log var), axis=-1)
return K.mean(xent _loss + kl 1loss)

def call(self, inputs):
X = inputs[0]
z _decoded = inputs[1]
loss = self.vae loss(x, z_decoded)
self.add loss(loss, inputs=inputs)
We don't use this output.
return Xx

We call our custom layer on the input and the decoded output,
to obtain the final model output.
y = CustomVariationallLayer()([input_img, z_decoded])

raining VAE

 We don’t pass target data during training (only pass x_train to the model in fit)

vae = Model(input _img, y)
vae.compile(optimizer="rmsprop', loss=None)
vae.summary()

Train the VAE on MNIST digits
(x_train,), (x_test, y test) = mnist.load data()

x_train = x_train.astype('float32') / 255.
Xx_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype('float32') / 255.

x_test = x_test.reshape(x_test.shape + (1,))

vae.fit(x=x_train, y=None, shuffle=True, epochs=10, batch size=batch_size,
validation data=(x_test, None))

Use Decoder to Turn Latent Vectors into Images

import matplotlib.pyplot as plt
from scipy.stats import norm

Display a 2D manifold of the digits

n =15 # figure with 15x15 digits

digit size = 28

figure = np.zeros((digit size * n, digit size * n))

Linearly spaced coordinates on the unit square transformed via the inverse CDF (ppf) of the Gaussian
to produce values of the latent variables z, since the prior of the latent space is Gaussian

grid x = norm.ppf(np.linspace(0.05, ©0.95, n))

grid y = norm.ppf(np.linspace(0.05, ©0.95, n))

for i, yi in enumerate(grid x):
for j, xi in enumerate(grid y):
z _sample = np.array([[xi, yi]])
z sample = np.tile(z_sample, batch size).reshape(batch_size, 2)
Xx_decoded = decoder.predict(z_sample, batch size=batch size)
digit = x_decoded[@].reshape(digit size, digit size)
figure[i * digit size: (i + 1) * digit size, j * digit size: (j + 1) * digit size] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys r')
plt.show()

T4 88853999939 VYOOD
Tordadd 49999V
oo ddasdassvovwe
oo ewete

0

40

350

0

30

oo NN e e
oo) Ny e e e
oMM hHh e
Trococmnnmnminiglglhy iy L
TR Emmnntnbhhhhy L1
PR moiinlglyty 'y, WE
™ N B B Be 0o 0o 0o Og O O B S N\
BN DN D B B 0o 0o 0o Og Og Oy O & \
B O\ O\ O\ O OwOm 0o Do Og Og By By N N\
B DN O\ DN DN O On 06 On Gn G Sy Sy N N B

250

200

B B O O O s O s e e ey, Yy, N

References

* Francois Chollet, “Deep Learning with Python,” Chapter 8
* https://www.tensorflow.org/tutorials/generative/

* https://developers.soogle.com/machine-learning/san

https://www.tensorflow.org/tutorials/generative/
https://developers.google.com/machine-learning/gan

