Generative Adversarial Networks (GANs)

Prof. Kuan-Ting Lai

2022/6/6
DeepFake (Intro)
This Person does not Exist (thispersondoesnotexist.com)
"The generative model can be thought of as analogous to a team of counterfeiters, trying to produce fake currency and use it without detection, while the discriminative model is analogous to the police, trying to detect the counterfeit currency.

Competition in this game drives both teams to improve their methods until the counterfeits are indistinguishable from the genuine articles."

[Goodfellow et. al.]
There are many interesting recent development in deep learning...The most important one, in my opinion, is adversarial training (also called GAN for Generative Adversarial Networks). This, and the variations that are now being proposed, is the most interesting idea in the last 10 years in ML.

Yann LeCun

• https://www.youtube.com/watch?v=9JpdAg6uMXs
• https://arxiv.org/abs/1701.00160
What is a Generative Model?

- Informally:
 - **Generative** models can generate new data instances.
 - **Discriminative** models discriminate between different kinds of data instances.

- Formally
 - **Generative** models capture the joint probability $p(X, Y)$, or just $p(X)$ if there are no labels.
 - **Discriminative** models capture the conditional probability $p(Y | X)$.

https://developers.google.com/machine-learning/gan
Training Generative Models is Hard!

https://developers.google.com/machine-learning/gan/generative
Generative Adversarial Networks (GAN)

- Ian Goodfellow et al. (2014)
GAN Structure

https://developers.google.com/machine-learning/gan/gan_structure
The Discriminator

- The discriminator loss penalizes the discriminator for misclassifying a real instance as fake or a fake instance as real.
- The discriminator updates its weights through backpropagation.
The Generator

https://developers.google.com/machine-learning/gan/generator
The Generator Training Steps

1. Sample random noise.
2. Produce generator output from sampled random noise.
3. Get discriminator "Real" or "Fake" classification for generator output.
4. Calculate loss from discriminator classification.
5. Backpropagate through both the discriminator and generator to obtain gradients.
6. Use gradients to change only the generator weights.
GAN Training

• Alternating Training
 – Train the discriminator for one or more epochs.
 – Train the generator for one or more epochs.
 – Repeat steps 1 and 2 to continue to train the generator and discriminator networks.

• Convergence
 – The discriminator performance gets worse
 – If the generator succeeds perfectly, then the discriminator has a 50% accuracy.

https://developers.google.com/machine-learning/gan/training
GAN Loss Functions

• Minimax Loss
 – The loss function used in the paper that introduced GANs.

• Wasserstein Loss

https://developers.google.com/machine-learning/gan/loss
Minimax Loss

• $D(x)$ is the discriminator's estimate of the probability that the real instance x is real.
• E_x is the expected value over all real data instances.
• $G(z)$ is the generator's output when given noise z.
• $D(G(z))$ is the discriminator's estimate of the probability that a fake instance is real.
• E_z is the expected value over all generated fake instances $G(z)$.
• The formula derives from the cross-entropy between the real and generated distributions.

$$\min_{\theta_g} \max_{\theta_d} \left[E_{x \sim p_{data}} \log D_{\theta_d}(x) + E_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

https://developers.google.com/machine-learning/gan/loss
Wasserstein Loss

• In Wasserstein GAN, discriminator does not actually classify instances. The output does not have to be between 0 and 1

• Discriminator training just tries to make the output larger for real instances than for fake instances.

• **Critic Loss:** \(D(x) - D(G(z)) \)
 – The discriminator tries to maximize the difference between its output on real instances and fake instances.

• **Generator Loss:** \(D(G(z)) \)
 – The generator tries to maximize the discriminator's output for its fake instances.
 – Use earth mover distance

https://developers.google.com/machine-learning/gan/loss
Common Problems of Training GAN Networks

• Strong Discriminator
 – if the discriminator is too good, then generator training can fail due to vanishing gradients

• Mode Collapse
 – The generator may learn to produce only one output

• Failure to Converge
 – Solution 1: adding noise to discriminator inputs
 – Solution 2: penalizing discriminator weights

https://developers.google.com/machine-learning/gan/problems
Bag of Tricks for Training GANs

• Use tanh as the last activation in the generator, instead of sigmoid
• Sample points from the latent space using a normal distribution
• Stochasticity is good to induce robustness. Introducing randomness during training helps prevent GAN to get stuck.
 – Use dropout in the discriminator
 – Add some random noise to the labels for the discriminator.
• Sparse gradients can hinder GAN training. There are two things that can induce gradient sparsity: 1) max pooling, 2) ReLU activations.
 – Use strided convolutions for downsampling
 – Use LeakyReLU, which allows small negative activation values.
• In generated images, it is common to see "checkerboard artifacts" caused by unequal coverage of the pixel space in the generator.
 – Use a kernel size that is divisible by the stride size
Checkerboard Artifacts

• Caused by unequal coverage of the pixel space in the generator
• Solution: Use a kernel size that is divisible by the stride size in Conv2D and Conv2DTranspose
Training GAN for Celebrity Faces

• Code: https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part05_gans.ipynb
Dataset: CelebA Dataset (cuhk.edu.hk)
Loading Images from Directory

• Unzip the dataset into “celeba_gan” folder

```python
from tensorflow import keras
dataset = keras.utils.dataset_from_directory(
    "celeba_gan",
    label_mode=None,
    image_size=(64, 64),
    batch_size=32,
    smart_resize=True)

dataset = dataset.map(lambda x: x / 255.)
```

Only the images will be returned—no labels.

We will resize the images to 64×64 by using a smart combination of cropping and resizing to preserve aspect ratio. We don’t want face proportions to get distorted!
Generator

```python
latent_dim = 128

generator = keras.Sequential(
    [keras.Input(shape=(latent_dim,)),
     layers.Dense(8 * 8 * 128),
     layers.Reshape((8, 8, 128)),
     layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),
     layers.LeakyReLU(alpha=0.2),
     layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),
     layers.LeakyReLU(alpha=0.2),
     layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"),
     layers.LeakyReLU(alpha=0.2),
     layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"),
    ],
    name="generator",
)
```

The latent space will be made of 128-dimensional vectors.

We use LeakyReLU as our activation.
from tensorflow.keras import layers

discriminator = keras.Sequential(
 [
 keras.Input(shape=(64, 64, 3)),
 layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Flatten(),
 layers.Dropout(0.2), # Important Trick!
 layers.Dense(1, activation="sigmoid"),
],
 name="discriminator",
)

Discriminator
GAN Training Loop

1. Draw random points in the latent space (random noise).
2. Generate images with generator using this random noise.
3. Mix the generated images with real ones.
4. Train discriminator using these mixed images including real and fake (generated) images.
5. Fix the discriminator’s weights.
6. Draw new random points in the latent space.
7. Train the generator to fool the discriminator.
The GAN Model

import tensorflow as tf
class GAN(keras.Model):
 def __init__(self, discriminator, generator, latent_dim):
 super().__init__()
 self.discriminator = discriminator
 self.generator = generator
 self.latent_dim = latent_dim
 self.d_loss_metric = keras.metrics.Mean(name="d_loss")
 self.g_loss_metric = keras.metrics.Mean(name="g_loss")

 def compile(self, d_optimizer, g_optimizer, loss_fn):
 super(GAN, self).compile()
 self.d_optimizer = d_optimizer
 self.g_optimizer = g_optimizer
 self.loss_fn = loss_fn

@property
def metrics(self):
 return [self.d_loss_metric, self.g_loss_metric]
```python
def train_step(self, real_images):
    batch_size = tf.shape(real_images)[0]
    random_latent_vectors = tf.random.normal(
        shape=(batch_size, self.latent_dim))
    generated_images = self.generator(random_latent_vectors)
    combined_images = tf.concat([generated_images, real_images], axis=0)
    labels = tf.concat(
        [tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))],
        axis=0
    )
    labels += 0.05 * tf.random.uniform(tf.shape(labels))

    with tf.GradientTape() as tape:
        predictions = self.discriminator(combined_images)
        d_loss = self.loss_fn(labels, predictions)
        grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
        self.d_optimizer.apply_gradients(
            zip(grads, self.discriminator.trainable_weights)
        )
```
```python
random_latent_vectors = tf.random.normal(
    shape=(batch_size, self.latent_dim))

misleading_labels = tf.zeros((batch_size, 1))

with tf.GradientTape() as tape:
    predictions = self.discriminator(
        self.generator(random_latent_vectors))
    g_loss = self.loss_fn(misleading_labels, predictions)
    grads = tape.gradient(g_loss, self.generator.trainable_weights)
    self.g_optimizer.apply_gradients(
        zip(grads, self.generator.trainable_weights))

self.d_loss_metric.update_state(d_loss)
self.g_loss_metric.update_state(g_loss)
return {
    "d_loss": self.d_loss_metric.result(),
    "g_loss": self.g_loss_metric.result()}
```

Monitor the Training

class GANMonitor(keras.callbacks.Callback):
 def __init__(self, num_img=3, latent_dim=128):
 self.num_img = num_img
 self.latent_dim = latent_dim

 def on_epoch_end(self, epoch, logs=None):
 random_latent_vectors = tf.random.normal(shape=(self.num_img, self.latent_dim))
 generated_images = self.model.generator(random_latent_vectors)
 generated_images *= 255
 generated_images.numpy()
 for i in range(self.num_img):
 img = keras.utils.array_to_img(generated_images[i])
 img.save(f"generated_img_{epoch:03d}_{i}.png")
Compiling and Training GAN

epochs = 100

gan = GAN(discriminator=discriminator, generator=generator,
 latent_dim=latent_dim)

gan.compile(
 d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
 g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
 loss_fn=keras.losses.BinaryCrossentropy(),
)

gan.fit(
 dataset, epochs=epochs, callbacks=[GANMonitor(num_img=10,
 latent_dim=latent_dim)]
)
Training Results

Epoch 0
Epoch 1
Epoch 9
Epoch 14
Epoch 21
Epoch 26
Epoch 27
Epoch 28
Interesting GAN Applications
Deepfake Round Table

https://www.creativebloq.com/features/deepfake-examples
This Person (and the Creepy Person) do not Exist!

thispersondoesnotexist.com
Evolution of GAN Face Generation

https://spectra.mathpix.com/article/2021.09.00009/gans
How to Detect Generated Faces?

• Detect fake faces by central positioning the eyes
• Stanford University researchers identify fake LinkedIn profiles using eye locations

Anime GAN (https://make.girls.moe/)

https://arxiv.org/abs/1708.05509
Super Resolution GAN

More GAN Models

• TensorFlow Tutorial / Generative
 1. Pixel-2-Pixel
 2. CycleGAN
 3. Adversarial FGSM
Pix2Pix

- Phillip Isola et al., *Image-to-Image Translation with Conditional Adversarial Networks*, 2018
Training Conditional GAN

• Both the generator and discriminator observe the input edge map
• Use U-Net and PatchGAN discriminator
Image-to-Image Demo

- https://affinelayer.com/pixsrv/
My Work (Cat Computer)
CycleGAN

- Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2018
- Learn to automatically “translate” an image from one into the other and vice versa
Model of CycleGAN

• Two mapping functions $G : X \rightarrow Y$ and $F : Y \rightarrow X$
• Two cycle consistency losses:
 – Forward cycle-consistency loss: $x \rightarrow G(x) \rightarrow F(G(x)) \approx x$
 – Backward cycle-consistency loss: $y \rightarrow F(y) \rightarrow G(F(y)) \approx y$
TensorFlow CycleGAN Results

Input Image

Predicted Image

Input Image

Predicted Image

Input Image

Predicted Image

Input Image

Predicted Image
GauGAN
(NVIDIA)
NVIDIA AI Playground

AI PLAYGROUND
The Intersection of AI, Art, and Science.

AI Demo
Paint Me a Picture: GauGAN2 AI Art Tool

AI in Art
See AI Art in New Dimensions with Fresh Work from 4 Artists

AI Demo
Take Conversations Global with World-Class Speech AI
My Work by GauGAN 2
Adversarial Attack

• Goodfellow et al., *Explaining and Harnessing Adversarial Examples*, 2015
• Fast Gradient Signed Method (FGSM)

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
Fooling AI Surveillance Cameras

https://www.arxiv-vanity.com/papers/1904.08653/
Key Takeaways

• Generative Adversarial Networks has two sub-networks: Generator and Discriminator. They compete with each other.
• Training is done if the Discriminator fails to detect fake image. (ACC=0.5)
• GANs are hard to train. Introducing randomness during training is important.
• Max pooling and ReLu introduces sparsity and hinder GAN training
• Conditional GANs can accept conditional images as inputs than generate target outputs
• CycleGAN can translate image from one domain to the other and vice versa.
References

- https://www.tensorflow.org/tutorials/generative/
- https://developers.google.com/machine-learning/gan
- https://make.girls.moe/
- https://www.creativebloq.com/features/deepfake-examples
- https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-4c9ecca35900
- https://affinelayer.com/pixsrv/