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Graphs (Networks)

•Ubiquitous in our life
−Ex: the Internet, Social Networks, Protein-interaction



Graph + Deep Learning



Graph Terminology

• An edge (link) connects two vertices (nodes)

• Two vertices are adjacent if they are connected

• An edge is incident with the two vertices it connects

• The degree of a vertex is the number of incident edges

https://slideplayer.com/slide/7806012/Marshall Shepherd,

https://slideplayer.com/slide/7806012/
https://slideplayer.com/user/9132365/


Network Analysis

• Vertex importance

• Role discovery

• Information propagation

• Link prediction

• Community detection

• Recommender System

5



Deep Learning on Graphs

• Graph Recurrent Neural Networks

• Graph Convolutional Networks (GCNs)

• Graph Autoencoders (GAEs)

• Graph Reinforcement Learning

• Graph Adversarial Methods

Zhang et al., “Deep Learning on Graphs: A Survey,” 2018



Learning Vertex Features

• Graph Embedding (Random walk + Word embedding)
− DeepWalk (2014), LINE (2015), node2vec (2016), DRNE (2018),...

• Graph Convolutional Networks (GCNs)
− Bruna et al. (2014), Atwood & Towsley (2016), Niepert et al. (2016), Defferrard

et al. (2016), Kipf & Welling (2017),…



DeepWalk (2014)

• Random Walk + Word Embedding

B. Perozzi, R. AI-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social Representations,” KDD, 2014 8



Random Walk Applications

• Economics: Random walk hypothesis

• Genetics: Genetic drift

• Physics: Brownian motion

• Polymer Physics: Idea chain

• Computer Science: Estimate web size

• Image Segmentation

• …
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Word2Vec
• Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed 

representations of words and phrases and their compositionality." In Advances in neural 
information processing systems, pp. 3111-3119. 2013.

https://towardsdatascience.com/mapping-word-embeddings-with-word2vec-99a799dc9695

https://towardsdatascience.com/mapping-word-embeddings-with-word2vec-99a799dc9695


Skip-Gram Model
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Learning Skip-Gram using 
Neural Network



Using Weight of Hidden Neuron as 
Embedding Vectors
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Evaluate Word2Vec



Vector Addition & Subtraction

• vec(“Russia”) + vec(“river”) ≈ vec(“Volga River”) 

• vec(“Germany”) + vec(“capital”) ≈ vec(“Berlin”)

• vec(“King”) - vec(“man”) + vec(“woman”) ≈ vec(“Queen”)



Datasets for Evaluating DeepWalk

• Blogs, Flicker, YouTube

• Metric
− Micro-F1

− Macro-F1
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Baseline Methods

• Spectral Clustering
− Use d-smallest eigenvectors of normalized graph Laplacian of G

− Assume that graph cuts are useful for classification

• Modularity
− Select top-d eigenvectors of modular graph partitions of G

− Assume that modular graph partitions are useful for classification

• Edge Cluster
− Use k-means to cluster the adjacency matrix of G

• wvRN: 
− Weighted-vote Relational Neighbor

• Majority
− The most frequent label
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Classification Results in BlogCatalog
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Classification Results in FLICKER
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Classification Results in YouTube

20



Node2vec (2016)
• Homophily (communities) vs. Structure Equivalence (node roles) 

• Add flexibility by exploring local neighborhoods

• Propose a biased random walk

A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” KDD, 2016 21



Random walk with Bias α

• 3 directions: (1) return to previous node, (2) BFS, (3) DFS
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Experimental Results
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BlogCatalog Protein-Protein Interactions (PPI) Wikipedia

Vertices 10,312 3,890 4,777

Edges 333,983 76,584 184,812

Groups (Labels) 39 50 40



LINE: Large-scale Information Network Embedding

• J. Tang et al., “LINE: Large-scale Information Network Embedding,” WWW, 2015

• Learn d-dimensional feature representations in two separate phases. 

• In the first phase, it learns d=2 dimensions by BFS-style over neighbors. 

• In the second phase, it learns the next d=2 dimensions by sampling nodes at a 2-hop 
distance from the source nodes.
− Vertex 6 and 7 should be embedded closely as they are connected via a strong tie.

− Vertex 5 and 6 should also be placed closely as they share similar neighbors.
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Parameters Sensitivity of node2vec
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Deep Recursive Network Embedding with 
Regular Equivalence (2018)
• K. Tu, R. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep Recursive Network 

Embedding with Regular Equivalence,” KDD, 2018
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DRNE Brief Summary

• Sample and sort neighboring nodes by their degrees

• Encode nodes using layer-normalized LSTM
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Who is the Boss? Identifying Key Roles in Telecom Fraud 
Network via Centrality-guided Deep Random Walk

• Summitted to Social Networks (under review)

• Co-work with Criminal Investigation Bureau (CIB) in Taiwan





International Telecom Fraud



562 Fraudsters in 10 Groups

• Spread out in 17 
cities of 4 countries

• Linked via Co-
offending records 
and  flights



Fraud 
Organization



Telecom Fraud Flow



Centrality-guided Random Walk

• The neighbors of node S are nodes A, B, C, and D, which have degree 
centralities of 1, 1, 2, and 5



Experimental Results



GRAPH CONVOLUTIONAL NETWORKS (GCN)

• Thomas Kipf, 2016 (https://tkipf.github.io/graph-convolutional-networks/)

• Kipf & Welling (ICLR 2017), Semi-Supervised Classification with Graph Convolutional Networks

• Defferrard et al. (NIPS 2016), Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

https://tkipf.github.io/graph-convolutional-networks/
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1606.09375


GCN Formula

• Given a graph G=(V,E)

• Xi for every node i; summarized in a N×D feature matrix 𝑋 ∈ ℝ𝑁×𝐷

− N: number of nodes

− D: dimension of input features

• A is the adjacency matrix A of G

• Output 𝑍 ∈ ℝ𝑁×𝐹, F is the dimension of output features

𝐻(𝑙+1) = 𝜎 𝐴𝐻(𝑙)𝑊(𝑙)



Addressing Limitations

• Normalizing the adjacency matrix A via graph Laplacian

−𝐷−
1

2𝐴𝐷−
1

2, D is the degree matrix

• Add self-loop to use its own feature as input
− ሚ𝐴 = 𝐴 + 𝐼

𝐻(𝑙+1) = 𝜎 𝐷−
1
2 ሚ𝐴𝐷−

1
2𝐻(𝑙)𝑊(𝑙)



Graph Convolution for 
Hashtag Recommendation
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Image Hashtag Recommendation

• Hashtag => a word or phrase preceded by the symbol # that 
categorizes the accompanying text

• Created by Twitter, now supported by all social networks

• Instagram hashtag statistics (2017):
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Latest stats: izea.com/2018/06/07/top-instagram-hashtags-2018

https://izea.com/2018/06/07/top-instagram-hashtags-2018/


Difficulties of Predicting Image Hashtag

• Abstraction: #love, #cute,...

• Abbreviation: #ootd, #ootn,…

• Emotion: #happy,…

• Obscurity: #motivation, #lol,…

• New-creation: #EvaChenPose,…

• No-relevance: #tbt, #nofilter, #vscocam

• Location: #NYC, #London

#ootn

#ootd #tbt

#FromWereIStand

#Selfie
#EvaChenPose



Zero-Shot Learning

• Identify object that you’ve never seen before

• More formal definition:
− Classify test classes Z with zero labeled data (Zero-shot!)



Zero-Shot Formulation

• Describe objects by words
− Use attributes (semantic features)



DeViSE – Deep Visual Semantic Embedding

• Google, NIPS, 2013



State-of-the-art: 
User Conditional Hashtag Prediction for Images
• E. Denton, J. Weston, M. Paluri, L. Bourdev, and R. Fergus, “User Conditional Hashtag 

Prediction for Images,” ACM SIGKDD, 2015 (Facebook)

• Hashtag Embedding:

• Proposed 3 models: 

1. Bilinear 
Embedding 

Model

2. User-biased 
model

3. User-
multiplicative 

model



User Meta Data



Facebook’s Experiments

• 20 million images

• 4.6 million hashtags, average 2.7 tags per image

• Result



• Goal: 
− Given information of IG posts, including images and texts, the goal is to recommend 

corresponding hashtags.

• Main contribution: 
− Use multiple types of input and implement graph convolution network for hashtag 

recommendation.

• Dataset: MaCon
− Every post has some attributes: post_id, words, hashtags, user_id, images.

Average posts of a user.
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Introduction
My
Work



Related Work Overview
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Based on images Based on text

Based on multimodal data



Related Work Overview
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Based on images Based on text

Based on multimodal data

Statistical tagging patterns: Sigurbjo ̈rnsson, B., and Van Zwol, R. 2008.
Flickr tag recommendation based on collective knowledge. In WWW,
327–336.



Related Work Overview
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Based on images Based on text

Based on multimodal data

Probabilistic ranking method: Liu, D.; Hua, X.-S.; Yang, L.; Wang, M.;
and Zhang, H.-J. 2009. Tag ranking. In WWW, 351–360. ACM.



Related Work Overview
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Based on images Based on text

Based on multimodal data



Related Work Overview
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Based on images Based on text

Based on multimodal data

Images + user-multiplicative tensor model: Denton, E.;
Weston, J.; Paluri, M.; Bourdev, L.; Fergus, R. 2015. User
conditional hashtag prediction for images. In: Proceedings
of the SIGKDD Conference on Knowledge Discovery and Data
Mining.



Related Work Overview
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Based on images Based on text

Based on multimodal data

End-to-end model: Wang, J.; Yang, Y.; Mao, J.; Huang, 
Z.; Huang, C.; and Xu, W. 2016. Cnn-rnn: A unified 
framework for multi-label image classification. In 
CVPR, 2285–2294.



Related Work Overview
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Based on images Based on text

Based on multimodal data

Attention mechanism into CNNs: Gong, Y., and Zhang, Q. 
2016. Hashtag recommendation using attention-based 
convolutional neural network. In IJCAI, 2782–2788. 



Related Work Overview
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Based on images Based on text

Based on multimodal data



Related Work Overview
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Based on images Based on text

Based on multimodal data



Related work

• 2019 AAAI. Memory Augmented CO-attentioN model (MACON)

• Multi-label classification problem

About Hashtag Recommendation 58

external memory unit

parallel co-attention mechanism



Dataset: MaCon

• Every post has some attributes: post_id, words, hashtags, user_id, 
images (40G).

• Paper: (from 2019 AAAI)



• 2019 CVPR

• Person search (end-to-end human detection + multi-part feature learning)

• Build a graph to learn global similarity between two individuals considering
context information

About Hashtag Recommendation 60

Related work



• ViLBERT (short for Vision-and-Language BERT) 

• Extend BERT to jointly represent images and text

• Co-attentional transformer layers 

About Hashtag Recommendation 61

Related work



• 2019 CVPR

• OLTR (Open Long-Tailed Recognition): Handle imbalanced classification, few-shot 
learning, and open-set recognition in one integrated algorithm 

About Hashtag Recommendation 62

Related work

Dynamic meta-embeddingModulated attention
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• Analysis of dataset
• According to hashtag frequency

Dataset: MaCon
My
Work



Relation
Matrix
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Post 
Vector

Tag Propagation Learning

Image 
Vector

Text 
Vector

Image similarity

user

Pairwise Relationship Generating

Multi-label 
LossPost Feature Generating

Double
Attention

+

3. The Proposed Approach

3.1 Model Overview



Pre-trained 
VGG-16
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…

Calculate cosine 
similarity 
between images

Relation map of image:

Relation Matrix

When alpha become close to 1, it 
seems to consider more about the 
relation between images.

Relation map of user:

3. The Proposed Approach

3.2 Pairwise Relationship Generating

𝜶=1 has the best performance
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Image 

Pre-trained VGG-16 (7, 7, 512)

Reshape to (7*7, 512)

Fully connected layer to (7*7, 300)

Image Features 

Text

Text Features

Embedding to dim=300

LSTM

i_vec

t_vec

Post 
Vector

ATT

ATT

Post 
Vector

Image 
Vector

Text 
Vector

Post Feature Generating

Double
Attention

+
+

3. The Proposed Approach

3.3 Post Feature Generating
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Input

GCN Layer 1

Dropout

ReLU

Dropout

GCN Layer 2

Multi-label Loss

Tag Propagation Learning
GCN

3. The Proposed Approach

3.4 Tag Propagation Learning
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• The training objective function:

training set 

a post and its corresponding hashtag set 

a hashtag in the hashtag set 

the softmax probability of choosing tag z for input post pi
Multi-label Loss

3. The Proposed Approach

3.5 Training
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4. Experiments

4.1 Evaluation Metrics 4.2 Implementation Details

• Implementation: Keras
• Optimizer = sgd
• Epochs = 200~300
• Batch_size = #nodes

• Training : Testing = 9:1

Precision(P) Recall(R) F1-score(F1)

• Recall@K: The recall value while K candidate 
hashtags are recommended for each posts.

• Generally, Recall(R) is relatively more 
important for this performance evaluation.
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4. Experiments

• MaCon (Zhang et al. 2019): 
• Every post has some attributes such as post_id, words, hashtags, user_id, images.

4.3 Dataset

Sub-1 Sub-2 Sub-3

Node number 11,607 25,259 58,665

Edge Number 68,029 165,392 165,238

Tag Frequency Top 50 Top 100 Tag 200

Length of Tags 
per posts

7~10 7~10 5~8

• Sub-dataset that is used for the following experiments 
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Method
(Size of dataset: 11,607) (Size of dataset: 25,259) (Size of dataset: 58,665)

P @10 R @10 F1 @10 P @10 R @10 F1 @10 P @10 R @10 F1 @10

1-layer DNN (image + text) 0.326 0.409 0.362 0.439 0.537 0.481 TBD TBD TBD

Co-Attention (CoA) TBD TBD TBD TBD TBD TBD TBD TBD TBD

MaCon (ATT + user habit) 0.325 0.413 0.363 0.218 0.267 0.239 0.103 0.168 0.127

ATT (my ATT) + GCN 0.357 0.448 0.396 0.453 0.554 0.496 0.259 0.416 0.317

4. Experiments

4.4.1 Comparisons with State-of-the-Arts

4.4 Experimental Results

• 1-layer DNN: Word embedding + LSTM + DNN
• Co-Attention(CoA) [Zhang et al.2017]
• MaCon [Zhang et al. 2019]
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Method
(Size of dataset: 11,607 posts)

P @10 R @10 F1 @10

GCN only 0.328 0.409 0.363

ATT only 0.289 0.361 0.320

ATT (my ATT) + GCN 0.357 0.448 0.396

4. Experiments

4.4.2 Ablation Studies

Effects of Attention and GCN Module

4.4 Experimental Results
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Threshold 
𝜏

(Size of dataset: 11,607 posts)

P @10 R @10 F1 @10

0.3 0.351 0.439 0.389

0.4 0.350 0.439 0.388

0.5 0.357 0.448 0.396

0.6 0.350 0.438 0.387

0.7 0.351 0.440 0.389

4. Experiments

4.4.2 Ablation Studies

Effects of different threshold value 𝜏
(in calculating image similarity for adjacency matrix binarization) 

4.4 Experimental Results
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𝛼
(Size of dataset: 11,607 posts)

P @10 R @10 F1 @10

0.5 0.348 0.436 0.386

0.9 0.353 0.443 0.391

1 0.357 0.448 0.396

4. Experiments

4.4.2 Ablation Studies

Effects of different 𝛼 for final relation matrix

4.4 Experimental Results

[Adding user information]

𝛼
(Size of dataset: 11,607 posts)

P @10 R @10 F1 @10

0.5 0.350 0.438 0.388

0.8 0.351 0.440 0.389

1 0.357 0.448 0.396

[Adding word information]

𝜶=1 has the best performance
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