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Applied Math for Deep Learning

• Linear Algebra

•Probability

•Calculus

•Optimization



Linear Algebra

• Scalar
− real numbers

• Vector (1D)
− Has a magnitude & a direction

• Matrix (2D)
− An array of numbers arranges in rows & 

columns

• Tensor (>=3D)
− Multi-dimensional arrays of numbers



Real-world examples of Data Tensors

• Timeseries Data – 3D (samples, timesteps, features)

• Images – 4D (samples, height, width, channels)

• Video – 5D (samples, frames, height, width, channels)
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Vector Dimension vs. Tensor Dimension

• The number of data in a vector is also called “dimension”

• In deep learning , the dimension of Tensor is also called “rank”

• Matrix = 2d array = 2d tensor = rank 2 tensor

• Axis means the specific dimension of a Tensor

https://deeplizard.com/learn/video/AiyK0idr4uM

https://deeplizard.com/learn/video/AiyK0idr4uM


The Matrix



Matrix

• Define a matrix with m rows 
and n columns:

Santanu Pattanayak, ”Pro Deep Learning with TensorFlow,” Apress, 2017



Matrix Operations

• Addition and Subtraction



Matrix Multiplication

• Two matrices A and B, where 

• The columns of A must be equal to the rows of B, i.e.  n == p

• A * B = C, where

•
m

n

p

q
q

m



Example of Matrix Multiplication (3-1)

https://www.mathsisfun.com/algebra/matrix-multiplying.html

 

  

 

 

 

  

 

    

    
  

             

https://www.mathsisfun.com/algebra/matrix-multiplying.html


Example of Matrix Multiplication (3-2)

https://www.mathsisfun.com/algebra/matrix-multiplying.html

 

  

 

 

 

  

 

    

    
    

https://www.mathsisfun.com/algebra/matrix-multiplying.html


Example of Matrix Multiplication (3-3)

https://www.mathsisfun.com/algebra/matrix-multiplying.html

 

  

 

 

 

  

 

    

    
    

      

https://www.mathsisfun.com/algebra/matrix-multiplying.html


Matrix Transpose

https://en.wikipedia.org/wiki/Transpose

https://en.wikipedia.org/wiki/Transpose


Dot Product

• Dot product of two vectors become a scalar

• Notation:  𝑣1 ∙ 𝑣2 or  𝑣1
𝑇𝑣2



Linear Independence

• A vector is linearly dependent on other vectors if it can be expressed 
as the linear combination of other vectors

• A set of vectors 𝑣1, 𝑣2,⋯ , 𝑣𝑛 is linearly independent if 𝑎1𝑣1 +
𝑎2𝑣2 +⋯+ 𝑎𝑛𝑣𝑛 = 0 implies all 𝑎𝑖 = 0, ∀𝑖 ∈ {1,2,⋯𝑛}



Span the Vector Space

• n linearly independent vectors can span 
n-dimensional space



Rank of a Matrix

• Rank is:
− The number of linearly independent row or column vectors

− The dimension of the vector space generated by its columns

• Row rank = Column rank

• Example:

https://en.wikipedia.org/wiki/Rank_(linear_algebra)

Row-
echelon 

form

https://en.wikipedia.org/wiki/Rank_(linear_algebra)


Identity Matrix I
• Any vector or matrix multiplied by I remains unchanged

• For a matrix 𝐴𝑚×𝑛, 𝐴𝐼𝑛 = 𝐼𝑚𝐴 = 𝐴



Inverse of a Matrix

• The product of a square matrix 𝐴 and its inverse matrix 𝐴−1

produces the identity matrix 𝐼

• 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

• Inverse matrix is square, but not all square matrices has inverses



Pseudo Inverse

• Non-square matrix and have left-inverse or right-inverse matrix

• Example:

− Create a square matrix 𝐴𝑇𝐴

− Multiplied both sides by inverse matrix (𝐴𝑇𝐴)−1

− (𝐴𝑇𝐴)−1𝐴𝑇 is the pseudo inverse function

𝐴𝑥 = 𝑏, 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑛

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏



Norm

• Norm is a measure of a vector’s magnitude

• 𝑙2 norm

• 𝑙1 norm

• 𝑙𝑝 norm

• 𝑙∞ norm



Eigen Vectors

• Eigenvector is a non-zero vector that changed by only a scalar factor λ
when linear transform 𝐴 is applied to:

• 𝑥 are Eigenvectors and 𝜆 are Eigenvalues

• One of the most important concepts for machine learning, ex:
− Principle Component Analysis (PCA)

− Eigenvector centrality

− PageRank

− …

𝐴𝑥 = 𝜆𝑥, 𝐴 ∈ ℝ𝑛×𝑛, 𝑥 ∈ ℝ𝑛



Example: Shear 
Mapping
• Horizontal axis is the 

Eigenvector



Power Iteration Method for Computing Eigenvector 

1. Start with random vector 𝑣

2. Calculate iteratively: 𝑣(𝑘+1) = 𝐴𝑘𝑣

3. After 𝑣𝑘 converges, 𝑣(𝑘+1) ≅ 𝑣𝑘

4. 𝑣𝑘 will be the Eigenvector with largest Eigenvalue



NumPy for Linear Algebra

• NumPy is the fundamental package for scientific computing 
with Python. It contains among other things:
−a powerful N-dimensional array object
−sophisticated (broadcasting) functions
−tools for integrating C/C++ and Fortran code
−useful linear algebra, Fourier transform, and random 

number capabilities



Python & NumPy tutorial

• http://cs231n.github.io/python-numpy-tutorial/

• Stanford CS231n: Convolutional Neural Networks 
for Visual Recognition
− http://cs231n.stanford.edu/

http://cs231n.github.io/python-numpy-tutorial/
http://cs231n.stanford.edu/


Create Tensors

Scalars (0D tensors) Vectors (1D tensors) Matrices (2D tensors)



Create 3D Tensor



Attributes of a Tensor

• Number of axes (dimensions)
− x.ndim

• Shape
− This is a tuple of integers showing how many data the tensor has along each axis

• Data type
− uint8, float32 or float64



Manipulating Tensors in Numpy
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Displaying the Fourth Digit
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Numpy Multiplication



Real-world examples of Data Tensors

• Vector data – 2D (samples, features)

• Timeseries Data – 3D (samples, timesteps, features)

• Images – 4D (samples, height, width, channels)

• Video – 5D (samples, frames, height, width, channels)
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Batch size & Epochs

• A sample
− A sample is a single row of data

• Batch size
− Number of samples used for one iteration of gradient descent

− Batch size = 1: stochastic gradient descent

− 1 < Batch size < all: mini-batch gradient descent

− Batch size = all: batch gradient descent

• Epoch 
− Number of times that the learning algorithm work through all training 

samples

34



Element-wise Operations for Matrix

• Operate on each element



NumPy Operation for Matrix 

• Leverage the Basic Linear Algebra subprograms (BLAS)

• BLAS is optimized using C or Fortran



Broadcasting

• Apply smaller tensor repeated to the extra axes of the larger tensor
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Tensor Dot



Implementation of Dot Product



Tensor Reshaping

• Rearrange a tensor’s rows and 
columns to match a target shape



Matrix Transposition

• Transposing a matrix means exchanging its rows and its columns



Unfolding the Manifold

• Tensor operations are complex geometric transformation in high-
dimensional space
− Dimension reduction





Differentiation

OR



Derivatives of Basic Function 
𝑑𝑦

𝑑𝑥



Gradient of a Function
• Gradient is a multi-variable generalization of the derivative

• Apply partial derivatives

• Example



Hessian Matrix

• Second-order partial derivatives



Maxima and Minima for Univariate Function

• If  
𝑑𝑓(𝑥)

𝑑𝑥
= 0, it’s a minima or a maxima point, then we study the 

second derivative:

− If 
𝑑2𝑓(𝑥)

𝑑𝑥2
< 0 => Maxima

− If 
𝑑2𝑓(𝑥)

𝑑𝑥2
> 0 => Minima

− If 
𝑑2𝑓(𝑥)

𝑑𝑥2
= 0 => Point of reflection

Minima



Maxima and Minima for Multivariate Function

• Computing the gradient and setting it to zero vector would 
give us the list of stationary points.

• For a stationary point 𝑥0 ∈ ℝ𝑛

− If the Hessian matrix of the function at 𝑥0 has both positive and 
negative eigen values, then 𝑥0 is a saddle point

− If the eigen values of the Hessian matrix are all positive then the 
stationary point is a local minima

− If the eigen values are all negative then the stationary point is a 
local maxima



Chain Rule
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Symbolic Differentiation

Computation Graph:

c = a + b

d = b + 1

e = c*d
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Stochastic Gradient Descent

1. Draw a batch of training samples x and 
corresponding targets y

2. Run the network on x to obtain predictions 
y_pred

3. Compute the loss of the network on the batch, a 
measure of the mismatch between y_pred and y

4. Compute the gradient of the loss with regard to 
the network’s parameters (a backward pass).

5. Move the parameters a little in the opposite 
direction from the gradient: W -= step * gradient



Gradient Descent along a 2D Surface 



Avoid Local Minimum using Momentum



Basics of Probability



Three Axioms of Probability

• Given an Event 𝐸 in a sample space 𝑆, S = 𝑖=1ڂ
𝑁 𝐸𝑖

• First axiom
− 𝑃 𝐸 ∈ ℝ, 0 ≤ 𝑃(𝐸) ≤ 1

• Second axiom
− 𝑃 𝑆 = 1

• Third axiom
− Additivity, any countable sequence of mutually exclusive events 𝐸𝑖
− 𝑃 𝑖=1ڂ

𝑛 𝐸𝑖 = 𝑃 𝐸1 + 𝑃 𝐸2 +⋯+ 𝑃 𝐸𝑛 = σ𝑖=1
𝑛 𝑃 𝐸𝑖



Union, Intersection, and Conditional 
Probability 
• 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵

• 𝑃 𝐴 ∩ 𝐵 is simplified as 𝑃 𝐴𝐵

• Conditional Probability 𝑃 𝐴|𝐵 , the probability of event A given B has 
occurred

− 𝑃 𝐴|𝐵 = 𝑃
𝐴𝐵

𝐵

− 𝑃 𝐴𝐵 = 𝑃 𝐴|𝐵 𝑃 𝐵 = 𝑃 𝐵|𝐴 𝑃(𝐴)



Chain Rule of Probability

• The joint probability can be expressed as chain rule



Mutually Exclusive

• 𝑃 𝐴𝐵 = 0

• 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵



Independence of Events

• Two events A and B are said to be independent if the probability of 
their intersection is equal to the product of their individual 
probabilities
− 𝑃 𝐴𝐵 = 𝑃 𝐴 𝑃 𝐵

− 𝑃 𝐴|𝐵 = 𝑃 𝐴



Bayes Rule

𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

Proof:

Remember 𝑃 𝐴|𝐵 = 𝑃
𝐴𝐵

𝐵

So 𝑃 𝐴𝐵 = 𝑃 𝐴|𝐵 𝑃 𝐵 = 𝑃 𝐵|𝐴 𝑃(𝐴)
Then Bayes 𝑃 𝐴|𝐵 = 𝑃 𝐵|𝐴 𝑃(𝐴)/𝑃 𝐵



Naïve Bayes Classifier



Naïve = Assume All Features Independent



Probability Mass Function and Dense Function

• Probability mass function (PMF)
− Function that gives the probability that a discrete random variable is exactly 

equal to some value

• Probability dense function (PDF)
− Specify the probability of the random variable falling within a particular range 

of values

න
𝐷

𝑃 𝑥 𝑑𝑥 = 1

𝑃 𝑋 = 𝑖 =
1

6
, 𝑖 ∈ {1,2,3,4,5,6}

https://en.wikipedia.org/wiki/Discrete_random_variable


Expectation of a Random Variable

• Expectation of a discrete random variable

• Expectation of a continuous random variable

𝐸 𝑋 = 𝑥1𝑝1 + 𝑥2𝑝2 +⋯+ 𝑥𝑛𝑝𝑛 =෍

𝑖=1

𝑛

𝑥𝑖𝑝𝑖

𝐸 𝑋 = න
𝐷

𝑥𝑃 𝑥 𝑑𝑥



Variance of a Random Variable

• Expectation of a discrete random variable

• Expectation of a continuous random variable

• Standard deviation 𝜎 is the square root of variance

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝜇 2 , where μ = 𝐸[𝑋]

𝑉𝑎𝑟 𝑋 = න
𝐷

(𝑥 − 𝜇)2𝑃 𝑥 𝑑𝑥



Covariance and Correlation Coefficient

• Expectation of a discrete random variable

• Correlation coefficient

𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝜇𝑥 𝑌 − 𝜇𝑦 ,

where 𝜇𝑥 = 𝐸[𝑋], 𝜇𝑦 = 𝐸[𝑌]

𝜌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦



Normal (Gaussian) Distribution
• One of the most important distributions

• Central limit theorem
− Averages of samples of observations of random variables independently drawn from

independent distributions converge to the normal distribution



Optimization

https://en.wikipedia.org/wiki/Optimization_problem

https://en.wikipedia.org/wiki/Optimization_problem


Formulate Your Problem

• Linear model:

• Least-squared Error:

• Regularization: 𝒘

• Objective function:

min.
𝑤

𝒘𝑇𝒙 − 𝒚
2
+ 𝜆 𝒘

𝑓 𝒙 = 𝒘𝑇𝒙 + b

(𝑓 𝒙 − 𝒚)2



Principle Component Analysis (PCA)

• Assumptions
− Linearity

− Mean and Variance are sufficient statistics

− The principal components are orthogonal 



Principle Component Analysis (PCA)

max. cov 𝐘, 𝐘

𝑠. 𝑏. 𝑡 𝐖T𝐖 = 𝐈
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