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Calculus

• Calculus is the mathematical study of continuous change.

• Two major branches: Differential Calculus and Integral 
Calculus

• We mainly use differential calculus in machine learning

2https://en.wikipedia.org/wiki/Calculus 

https://en.wikipedia.org/wiki/Calculus


Definition of Derivative

• A function of a real variable f(x) is differentiable at a point x of its domain, 
if its domain contains an open interval containing x and the limit exists.

• Derivative measures the “rate of change”
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f ′ x = lim
△ x → 0

f x + △ x − f x − △ x

2 △ x

f ′ x = lim
△ x → 0

f x +△ x − f x

△ x

OR



Geometric Definition

• Average rate of change of y with respect to x over the interval.
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Basic Rules

• Common derivative rules
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Implement Differentiation

• Use a small value (0.001) to replace Δ

6Seth Weidman, “Deep Learning from Scratch,” O’Reilly Media, 2019



Derivative Function

• For any input function, calculate derivative using the definition
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from typing import Callable

def deriv(func: Callable[[ndarray], ndarray],
     input_: ndarray,
     delta: float = 0.001) -> ndarray:
  '''
  Evaluates the derivative of a function "func" at every element in the
  "input_" array.
  '''
  return (func(input_ + delta) - func(input_ - delta)) / (2 * delta)

https://github.com/SethHWeidman/DLFS_code

https://github.com/SethHWeidman/DLFS_code


Nested Functions

•𝑦 = 𝑓2(𝑓1 𝑥 )
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The Chain Rule

• Chain rule is a formula that expresses the derivative of 
the composition of two differentiable functions f and g in terms of 
the derivatives of f and g

• Intuitively, the chain rule says that knowing change rate 
of z vs. y and y vs. x, allows one to calculate change rate 
of z vs. x as the product of the two rates of change.
−George F. Simmons: "If a car travels twice as fast as a bicycle and the 

bicycle is 4 times as fast as a walking man, then the car travels 2 × 4 = 8 
times as fast as the man."

9https://en.wikipedia.org/wiki/Chain_rule 

https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/George_F._Simmons
https://en.wikipedia.org/wiki/Chain_rule


Illustration of the Chain Rule

• The derivative of the composite function should be a sort of product 
of the derivatives of its constituent functions.
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Implement the Chain Rule
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def chain_deriv_2(chain: Chain, input_range: ndarray) -> ndarray:
  
  assert len(chain) == 2
  assert input_range.ndim == 1

  f1 = chain[0]
  f2 = chain[1]

  # df1/dx
  f1_of_x = f1(input_range)

  # df1/du
  df1dx = deriv(f1, input_range)

  # df2/du(f1(x))
  df2du = deriv(f2, f1(input_range))

  return df1dx * df2du



Chain Rule of the Square and Sigmoid

• Implement the Square and Sigmoid functions

12



Visualizing Functions and Derivatives

• Plot sigmoid(square(x)) and square(sigmoid(x))
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PLOT_RANGE = np.arange(-3, 3, 0.01)

chain_1 = [square, sigmoid]
chain_2 = [sigmoid, square]

plot_chain(chain_1, PLOT_RANGE)
plot_chain_deriv(chain_1, 
PLOT_RANGE)

plot_chain(chain_2, PLOT_RANGE)
plot_chain_deriv(chain_2, 
PLOT_RANGE)

def plot_chain(ax, chain: Chain, input_range: ndarray) -> 
None:
  assert input_range.ndim == 1, "Function requires a 1 
dimensional ndarray as input_range"

  output_range = chain_length_2(chain, input_range)
  ax.plot(input_range, output_range)

def plot_chain_deriv(ax, chain: Chain, input_range: ndarray) 
-> ndarray:
  output_range = chain_deriv_2(chain, input_range)
  ax.plot(input_range, output_range)



Original Functions and their Derivatives

f(x) = sigmoid(square(x))               f(x) = square(sigmoid(x))
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Longer Chain Rule

• Let us try 3 functions
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def chain_deriv_3(chain: Chain, input_range: ndarray) -> ndarray:
  # Uses the chain rule to compute the derivative of three nested functions:
  # (f3(f2(f1)))' = f3'(f2(f1(x))) * f2'(f1(x)) * f1'(x)
  assert len(chain) == 3, "This function requires 'Chain' objects to have length 3"

  f1 = chain[0]
  f2 = chain[1]
  f3 = chain[2]

  # f1(x)
  f1_of_x = f1(input_range)
  # f2(f1(x))
  f2_of_x = f2(f1_of_x)
  # df3du
  df3du = deriv(f3, f2_of_x)
  # df2du
  df2du = deriv(f2, f1_of_x)
  # df1dx
  df1dx = deriv(f1, input_range)

  # Multiplying these quantities together at each point
  return df1dx * df2du * df3du



Visualize Our Nested Functions
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Functions with Two Inputs

• α(x, y) = x + y
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Partial Derivative
• Partial derivative of a function of several variables is its derivative 

with respect to one of those variables, with the others held constant

Example:

19

So at (1, 1), by substitution, 

the slope is 3

https://en.wikipedia.org/wiki/Partial_derivative 

https://en.wikipedia.org/wiki/Partial_derivative


Gradient

• An important example of a function of several variables is the case of a 
scalar-valued function                         on a domain in Euclidean space    . 
In this case f has a partial derivative  with respect to each variable xj. 
At the point a, these partial derivatives define the vector

20



Total Derivative

• The chain rule has a particularly elegant statement in terms of total 
derivatives. It says that, for two functions f and g, the total derivative 
of the composite function g∘f  at a satisfies

21https://en.wikipedia.org/wiki/Total_derivative 

https://en.wikipedia.org/wiki/Total_derivative


Chain Rule for Two functions
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https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of
_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions 

https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions
https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions


Chain Rule for 2 Functions & 2 Variables
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Derivative of Two-Input Function

24



Derivative of Two-Input Function
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Derivative of Two Inputs Function

26

def multiple_inputs_add_backward(x: ndarray,
                y: ndarray,
                sigma: Array_Function) -> float:
  '''
  Computes the derivative of this simple function with respect to both inputs.
  '''
  # Compute "forward pass"
  a = x + y

  # Compute derivatives

  dsda = deriv(sigma, a)

  dadx, dady = 1, 1

  return dsda*dadx, dsda*dady



Derivative of Multi-Inputs Function

• Dot product (or matrix multiplication) is a concise way to represent 
many individual operations

27



Matrix Derivative

• “the derivative regarding a matrix” really means “the derivative 
regarding each element of the matrix.”

28

Partial 
Derivative



Vector Functions and Their Derivatives
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def matmul_forward(X: ndarray, W: ndarray) -> ndarray:
  assert X.shape[1] == W.shape[0]
  # matrix multiplication
  N = np.dot(X, W)
  return N

def matmul_backward_first(X: ndarray, W: ndarray) -> ndarray:
  # backward pass
  dNdX = np.transpose(W, (1, 0))
  return dNdX

def matrix_forward_extra(X: ndarray, W: ndarray, sigma: Array_Function) -> ndarray:
  assert X.shape[1] == W.shape[0]
  # matrix multiplication
  N = np.dot(X, W)
  S = sigma(N)
  return S



Vector Functions and Their Derivatives
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def matrix_function_backward_1(X: ndarray,
               W: ndarray,
               sigma: Array_Function) -> ndarray:
    assert X.shape[1] == W.shape[0]

  # matrix multiplication
  N = np.dot(X, W)

  # feeding the output of the matrix multiplication
  S = sigma(N)

  # backward calculation
  dSdN = deriv(sigma, N)

  # dNdX
  dNdX = np.transpose(W, (1, 0))

  # multiply them together; since dNdX is 1x1 here, order doesn't matter
  return np.dot(dSdN, dNdX)



Computational Graph with Two 2D Matrix Inputs

• What are the gradients of the output S with respect to X and W? 

• Can we simply use the chain rule again?

31



X*W is a Matrix

• For the notion of a “gradient” regarding matrix outputs, we need to 
sum the final array in the sequence so that the notion of “how much 
will changing each element of X affect the output” will even make 
sense.

32
Weidman, Seth. Deep Learning from Scratch: Building with Python from First Principles (pp. 30-31). O'Reilly Media.



def matrix_function_forward_sum(X: ndarray, W: ndarray,
                sigma: Array_Function) -> float:
  assert X.shape[1] == W.shape[0]

  # matrix multiplication
  N = np.dot(X, W)
  # feeding the output of the matrix multiplication through sigma
  S = sigma(N)
  # sum all the elements
  L = np.sum(S)
  return L

Sum Up the Matrix Output

• Add a sum up function Λ

33
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def matrix_function_backward_sum_1(X: ndarray, W: ndarray, 
                 sigma: Array_Function) -> ndarray:
  assert X.shape[1] == W.shape[0]
  # matrix multiplication
  N = np.dot(X, W)
  S = sigma(N)
  # sum all the elements
  L = np.sum(S)
  
  # dLdS - just 1s
  dLdS = np.ones_like(S)
  # dSdN
  dSdN = deriv(sigma, N)
  # dLdN
  dLdN = dLdS * dSdN
  # dNdX
  dNdX = np.transpose(W, (1, 0))
  # dLdX
  dLdX = np.dot(dSdN, dNdX)

  return dLdX



Optimization

https://en.wikipedia.org/wiki/Optimization_problem

https://en.wikipedia.org/wiki/Optimization_problem


Gradient-based 
Optimization

• Gradient Descent 
(Cauchy, 1847):

Reduce f(x) by moving x 
in small steps with 
opposite sign of the 
derivative

− 𝑓(𝑥 − 𝛼 ∗ 𝑓′ 𝑥 )

36



Critical Points (Stationary Points)

• f’(x)=0
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Local Minimum vs. Global Minimum
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Second Derivative 𝑓′′(𝑥)

• Second Derivative 𝑓′′(𝑥) measures the curvature

39



Hessian Matrix

• denoted by H or, ∇2

40https://en.wikipedia.org/wiki/Hessian_matrix 

https://en.wikipedia.org/wiki/Del_squared
https://en.wikipedia.org/wiki/Hessian_matrix


Maxima and Minima for Univariate Function

• If  
𝑑𝑓(𝑥)

𝑑𝑥
= 0, it’s a minima or a maxima point, then we study the 

second derivative:

− If 
𝑑2𝑓(𝑥)

𝑑𝑥2 < 0 => Maxima

− If 
𝑑2𝑓(𝑥)

𝑑𝑥2 > 0 => Minima

− If 
𝑑2𝑓(𝑥)

𝑑𝑥2 = 0 => Point of reflection

Minima



Saddle Point

• A saddle point contains both positive and negative curvature.

42

𝑓 𝑥 = 𝑥1
2 − 𝑥2

2



How the Learning Goes Wrong

• If the learning rate is too big, 
this oscillation diverges

• What we would like to achieve:
− Move quickly in directions with 

small but consistent gradients.

− Move slowly in directions with 
big but inconsistent gradients.

43Geoffrey Hinton et al., https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf 

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Select Training Samples

44



Momentum

• ∆𝑡← −𝛼 ∗ 𝑓′ 𝑥 + ∆𝑡−1 ∗ 𝜏

• 𝑤𝑡 ← 𝑤𝑡−1 + ∆𝑡

45https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325 c

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325


Adaptive Gradient algorithm (AdaGrad)

• Keeps track of the sum of gradient squared
− Σ𝑡 ← Σ𝑡−1 + 𝑓′ 𝑥 2

− ∆𝑡← −𝛼 ∗ 𝑓′ 𝑥 ∗
1

Σ𝑡

− 𝑤𝑡 ← 𝑤𝑡−1 + ∆𝑡

• In ML optimization, some features are very 
sparse, so the average gradient is small 
and training is slow.

• AdaGrad addresses this problem using this 
idea: the more you have updated a feature 
already, the less you will update it in the 
future 

46https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325 c

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325


Root Mean Square Propagation (RMSProp)

47

• AdaGrad is too slow

• RMSProp adds a decay rate 𝜀 for 
updating gradient squared
− Σ𝑡 ← Σ𝑡−1 ∗ 𝜀 + 𝑓′ 𝑥 2 ∗ (1 − 𝜀)

− ∆𝑡← −𝛼 ∗ 𝑓′ 𝑥 ∗
1

Σ𝑡

− 𝑤𝑡 ← 𝑤𝑡−1 + ∆𝑡



Adaptive Moment Estimation (ADAM)

• Momentum + 
RMSProp

• Lilipads GD 
Viz tool

48

https://github.com/lilipads
/gradient_descent_viz 

https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz


Comparing 
Methods
• RMSProp and 

ADAM can 
handle the 
saddle point 
better

49

https://github.com/lilipads
/gradient_descent_viz

https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz
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