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Calculus

 Calculus is the mathematical study of continuous change.

 Two major branches: Differential Calculus and Integral
Calculus

* We mainly use differential calculus in machine learning

https://en.wikipedia.org/wiki/Calculus



https://en.wikipedia.org/wiki/Calculus

Definition of Derivative

* A function of a real variable f(x) is differentiable at a point x of its domain,
if its domain contains an open interval containing x and the limit exists.

* Derivative measures the “rate of change”
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Geometric Definition

* Average rate of change of y with respect to x over the interval.
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Basic Rules

e Common derivative rules
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Implement Differentiation

* Use a small value (0.001) to replace A

%(a) — lirnf(a +4)—fla—A4)

A—0 2 XA

\ 4

gﬁ(a) ~ fla+0.001) — f(a—0.001)
Y= 0.002

Seth Weidman, “Deep Learning from Scratch,” O’Reilly Media, 2019




Derivative Function

* For any input function, calculate derivative using the definition

from typing import Callable

def deriv(func: Callable[[ndarray], ndarray],
input_: ndarray,
delta: float = ©.001) -> ndarray:

Evaluates the derivative of a function "func" at every element in the

"input_" array.

return (func(input_ + delta) - func(input_ - delta)) / (2 * delta)

https://github.com/SethHWeidman/DLFS code



https://github.com/SethHWeidman/DLFS_code

Nested Functions

# A Function takes 1n an ndarrdy as an argument

Array_Function = Callable[[ndarray], ndarray]

*y = f2(fi(x))
y 2 1 # A Chain i1s a lList of functions

Chain = List[Array Function]

def chain_ length_2{(chain: Chain,
a: ndarrav) -> ndarray:

Fuvaludgtes two functions in 4 row, in a "Chain".

2 y aggert len(chain) == 2, \

"Length of input 'chain' should be 2"

f1
f2

chain[0]
chain[1]

return f2(£f1(x))



The Chain Rule

« Chain rule is a formula that expresses the derivative of
the composition of two differentiable functions f and g in terms of
the derivatives of f and g

dz B dz dy
de  dy dz’
* Intuitively, the chain rule says that knowing change rate

of zvs. y and y vs. x, allows one to calculate change rate
of z vs. x as the product of the two rates of change.

— George F. Simmons: "If a car travels twice as fast as a bicycle and the
bicycle is 4 times as fast as a walking man, then the car travels 2 x 4 =8
times as fast as the man."

https://en.wikipedia.org/wiki/Chain rule
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Illustration of the Chain Rule

* The derivative of the composite function should be a sort of product
of the derivatives of its constituent functions.
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Implement the Chain Rule

def chain deriv_2(chain: Chain, input _range: ndarray) -> ndarray:

assert len(chain) ==
assert input_range.ndim == 1

1
2

chain[9]

chain[1] dfz(x) _ dfz

# dfl/dx
f1 of x = fl(input_range)

92 £ ) x i)

# dfl/du
dfldx = deriv(fl, input_range)

# df2/du(f1(x))
df2du = deriv(f2, fl(input_range))

return dfldx * df2du 11




Chain Rule of the Square and Sigmoid

* Implement the Square and Sigmoid functions

g
0.2
-6 -2

12



Visualizing Functions and Derivatives

* Plot sigmoid(square(x)) and square(sigmoid(x))

def plot chain(ax, chain: Chain, input_range: ndarray) ->
None:

assert input _range.ndim == 1, "Function requires a 1
dimensional ndarray as input_range"

output _range = chain_length_2(chain, input_range)
ax.plot(input_range, output_range)

def plot chain deriv(ax, chain: Chain, input_range: ndarray)
-> ndarray:
output _range = chain_deriv_2(chain, input_range)
ax.plot(input_range, output_range)

PLOT _RANGE = np.arange(-3, 3, 0.01)

chain_1
chain 2

[square, sigmoid]
[sigmoid, square]

plot_chain(chain_1, PLOT RANGE)
plot _chain_deriv(chain_1,
PLOT_RANGE)

plot chain(chain_2, PLOT_RANGE)
plot _chain_deriv(chain_2,
PLOT_RANGE)

13




Original Functions and their Derivatives

f(x) = sigmoid(square(x)) f(x) = square(sigmoid(x))
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Longer Chain Rule

* Let us try 3 functions

D) = Dif, 000 x L2(,00) x D)

-| —>| |—> f,(l;(x))—bﬂ—by
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def chain deriv 3(chain: Chain, input_range: ndarray) -> ndarray:
# Uses the chain rule to compute the derivative of three nested functions:
# (F3(Ff2(f1)))"' = 3" (f2(f1(x))) * f2'(f1(x)) * f1'(x)
assert len(chain) == 3, "This function requires 'Chain' objects to have length 3"

f1
f2
f3

chain[@]
chain[1]
chain[2]

# F1(x) »— f0—> f, f0,00)— f,
f1 of x = fl(input_range) ‘; > Y Y

# F2(F10x)) S RN fd g A

- e

e

- - -~

—— o —

2 of x = f2(f1_of x)

# df3du

df3du = deriv(f3, f2 of x)

# df2du

df2du = deriv(f2, f1 of x)

# dfildx

dfldx = deriv(fl, input _range)

# Multiplying these quantities together at each point
return dfldx * df2du * df3du

p i

s
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Visualize Our Nested Functions

e sigmoid(square(ieakyrelu(X)))
08 { —— sigmoid(square(leakyrelu(X)))
06 -
04 -
02 -
0.0




Functions with Two Inputs

*afx,y)=x+y

X —p
y —»

a—p O S
00
E

. > M
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Partial Derivative

* Partial derivative of a function of several variables is its derivative
with respect to one of those variables, with the others held constant

Example:

2= flz,y) =2 +zy+y
0z

e 2z + .

So at (1, 1), by substitution,
the slope is 3

https://en.wikipedia.org/wiki/Partial derivative

19


https://en.wikipedia.org/wiki/Partial_derivative

Gradient

* An important example of a function of several variables is the case of a
scalar-valued function f(z;,...,z.dn a domain in Euclidean space E"
In this case f has a partial derivative with respect to each variable x.

At the point a, these partial derivatives define the vector

V1(@) = (2@ 5 (@)

20



Total Derivative

* The chain rule has a particularly elegant statement in terms of total
derivatives. It says that, for two functions f and g, the total derivative
of the composite function gof at a satisfies

d(go fla = dgsa) - dfa.

https://en.wikipedia.org/wiki/Total derivative

21


https://en.wikipedia.org/wiki/Total_derivative

Chain Rule for Two functions

and

dz 0z dxr 0z dy

E_aw.dth@y.dt’

(14.5.1)

where the ordinary derivatives are evaluated at ¢t and the partial derivatives are evaluated
at (z,vy).

https://math.libretexts.org/Bookshelves/Calculus/Calculus (OpenStax)/14%3A Differentiation of Functions of
Several Variables/14.05%3A The Chain Rule for Multivariable Functions 22
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Chain Rule for 2 Functions & 2 Variables

oxX 0Z oX
Suppose z = g(u,v) and y = h(u,v) are differentiable functions of u and U =~ 30
v, and z = f(x,y) is a differentiable function of = and y. Then,
z = f(g(u,v), h(u,v)) is a differentiable function of « and v, and
dZ oX
0z 0z0r 0z0y axX v
= 14.5.2 SN
2 Bz0u Oy du (14.5.2)
and z = f(x, y)
O 20w %20y (14.5.3) iz ay
az dy

v

dy ov
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Derivative of Two-Input Function

f(z,y) = s(a(z,y)) a=a(z,y) =2z +y

e —of—s




Derivative of Two-Input Function

f(z,y) = sa(z,9)), a = a(z,y) =z +y

6f 00
ox

da

= Z—Z (alx,)) * 52 ((6)) = 52 (x +)



Derivative of Two Inputs Function

def multiple inputs add backward(x: ndarray,
y: ndarray,
sigma: Array Function) -> float:

Computes the derivative of this simple function with respect to both inputs.

# Compute "forward pass”
a=X+Y

# Compute derivatives
dsda = deriv(sigma, a)
dadx, dady = 1, 1

return dsda*dadx, dsda*dady

26




Derivative of Multi-Inputs Function

* Dot product (or matrix multiplication) is a concise way to represent
many individual operations

Red =intermediate

X, —p

—bM]\‘

X, ——
W, —p

quantities

X, —p

W, —p

c

A
4 A
y.shape:
(b, c)
X.y=2z
b < Column of y
b
A
x.shape: L z.shape:
(a, b) L (a, c)
,,D z[i, |
Row of x { 1]
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Matrix Derivative

* “the derivative regarding a matrix” really means “the derivative
regarding each element of the matrix.”

Q [ o ov O ]

0X
o Partial
ox: "1 Derivative X1
1 o T
0 OU_ — x2 = X
axz -X3-
= w, 2

0X4



Vector Functions and Their Derivatives

def matmul forward(X: ndarray, W: ndarray) -> ndarray:
assert X.shape[l] == W.shape[9]
# matrix multiplication [X]

N = np.dot(X, W) [W] N —p 6 —> 5

return N

def matmul backward first(X: ndarray, W: ndarray) -> ndarray:
# backward pass
dNdX = np.transpose(W, (1, 9)) lﬂi.::[wq Wy W3] = VVT
return dNdX 0X

def matrix forward extra(X: ndarray, W: ndarray, sigma: Array_Function) -> ndarray:
assert X.shape[l] == W.shape[0]
# matrix multiplication
N = np.dot(X, W)
S = sigma(N)
return S




Vector Functions and Their Derivatives

def matrix function backward 1(X: ndarray,
W: ndarray,
sigma: Array_ Function) -> ndarray:
assert X.shape[l] == W.shape[0]

# matrix multiplication
N = np.dot(X, W)

80

# feeding the output of the matrix multiplication

S = sigma(N) ‘/’\ax
# backward calculation [X] /\

dSdN = deriv(sigma, N)

[w]
# dNdX %

dNdX = np.transpose(W, (1, 9)) oW

# multiply them together; since dNdX is 1x1 here, order doesn't matter
return np.dot(dSdN, dNdX)




Computational Graph with Two 2D Matrix Inputs

* What are the gradients of the output S with respect to X and W?
e Can we simply use the chain rule again?

11 X122 X13 Wii Wi
X = [X1 X Xp3 W =Wy Wp
LX31 X33 X33 W31 Wz

31



X*W is a Matrix

* For the notion of a “gradient” regarding matrix outputs, we need to
sum the final array in the sequence so that the notion of “how much
will changing each element of X affect the output” will even make

Sense.

o(X*W) =

o(x11 * w1 + T12 * wo1 + T13 * w3)
{T(iﬂgl * W11 + 99 * Wop + To3g * wSl)

o (31 * wi1 + T32 * wa1 + L33 * W31)

o

g

o

o(XWh1) o(XWi)]
— U’(XWZI) J(XWZE)
oc(XWs1) o XWsiy)

(211 * w1z + T12 * Way + T13 * W32)
(5.1321 * W19 + T9g * Wog + Tog * iﬂgg)

T3] * W12 + T32 * Wz + T33 * '{Ugg) i

32



Sum Up the Matrix Output

* Add a sum up function A

[E/ﬂ N—>» O —>»S—PA—>L

def matrix_ function forward sum(X: ndarray, W: ndarray,
sigma: Array_Function) -> float:

assert X.shape[l] == W.shape[0]

# matrix multiplication
N = np.dot(X, W)
# feeding the output of the matrix multiplication through sigma
S = sigma(N)

# sum all the elements

L = np.sum(S)

return L

33




assert

=np

— 3 0 =2 H®

=np

# dLdS
dLdS =
# dSdN
dSdN =
# dLdN
dLdN =
# dNdX
dNdX =
# dLdX
dLdX =

return

def matrix function backward sum 1(X: ndarray, W:

ndarray,

sigma: Array_Function) -> ndarray:

X.shape[1l] == W.shape[0]

matrix multiplication

.dot (X, W)

= sigma(N)
sum all the elements

.sum(S)

- just 1s
np.ones_like(S)

deriv(sigma, N)

“_ %y

dLdS * dSdN ow

np.transpose(W, (1, 0))
np.dot(dSdN, dNdX)

dLdX

00

du

oy
‘/\ax/,_\
[[X}::(D'_"N-—'PG
W




Optimization

The standard form of a continuous optimization problem is]
imin. minimize f(z)
H

¢ b+t subject to gz(:rf) 0, i=1,....m

where

o f:R" — R is the objective function to be minimized over the n-variable vector x,
¢ gi(x) < 0 are called inequality constraints

o h;j(z) = 0 are called equality constraints, and
em > 0andp > 0.

https://en.wikipedia.org/wiki/Optimization problem



https://en.wikipedia.org/wiki/Optimization_problem

Gradient-based
Optimization

 Gradient Descent
(Cauchy, 1847):

Reduce f(x) by moving x
in small steps with
opposite sign of the
derivative

—flx—axf'(x))

2.0 o

0.0 |-
-0.5
-1.0

-1.5

\ Global minimum at « = 0.
\ Since f’(z) = 0, gradient
\ descent halts here.

[

For z < 0, we have f'(z)

For 2 > 0, we have f/(z) >|0,

=

so we can decrease f b so we can decrease f by
moving rightward. moving leftward.
1
— Je)==
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Critical Points (Stationary Points)
* f/(x)=0

Minimum Maximum Saddle point

RN




Local Minimum vs. Global Minimum

| Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

This local minimum performs
poorly and should be avoided.

38



Second Derivative f"'(x)

* Second Derivative f''(x) measures the curvature

Negative curvature  No curvature Positive curvature

39



Hessian Matrix

 denoted by H or, V2

e o o
dx? dxy dxo dry dx,,

o° f &’y 0" f
Oy O dxs | dzy Oy,

v e

| dz, 0z, Oz, Ox; dz;,

https://en.wikipedia.org/wiki/Hessian matrix

40
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Maxima and Minima for Univariate Function

d L . : :
e If [x) _ 0, it’s a minima or a maxima point, then we study the

X
second derivative:

d? :
—If di(zx) < 0 =>Maxima
d? .
— If dfc(zx) > 0 => Minima
2 , .
i dd];(zx) = 0 => Point of reflection Maxima Pome of Inflection

250

Minima
~750 4

~1000 4

100 75 50 -25 n\z's $0 75 100 -100 -75 -50 -25 00 25 SO0 75 100 100 <75 -50 -25 00 25 SO 175 100



Saddle Point

* A saddle point contains both positive and negative curvature.

42



How the Learning Goes Wrong

* If the learning rate is too big,

this oscillation diverges

« What we would like to achieve: 1

— Move quickly in directions with
small but consistent gradients. E

— Move slowly in directions with
big but inconsistent gradients.

Geoffrey Hinton et al., https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture slides lec6.pdf 43
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Select Training Samples

3.8

3.6

3.4

=8 Stochastic
+—— Mini-batch
—e Batch

91 3.2

3.0
2.8

2.6

2.4

2.5

3.0 3.5

4.5
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Momentum

e A —ax*xf'(x)+ A1 *T

Lpwog hew e

Iemry llew o

Detay =w

Lasmmg Raw ‘»

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325 ¢ 45
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Adaptive Gradient algorithm (AdaGrad)

* Keeps track of the sum of gradient squared
—- % <« 2 H{f (0}
— A= —a * f'(x) .

N

— W < Weg + 4

* In ML optimization, some features are very _ ¢
sparse, so the average gradient is small et
and training is slow. |

» AdaGrad addresses this problem using this’ \

idea: the more you have updated a feature > < R
already, the less you will update it in the

future

AN

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325 ¢ 46
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Root Mean Square Propagation (RMSProp)

o |

e AdaGrad is too slow

* RMSProp adds a decay rate ¢ for
updating gradient squared
S e xe+H{f' 0} *(1-¢)

e —a s f1(@) o=

VIt

— Wy « We_1 + A




Adaptive Moment Estimation (ADAM

[

Gradient Descent Visualization

Local Minimum

Overview

* Momentum +
RMSProp

* Lilipads GD
Viz tool

|| Path

Decay rate:

Adagrad

Decay rate:

. i ili Betal:
https..//glthub.com/ll-llpads e o @ o
/eradient descent viz = B

Learning Rate:

Learning Rate:

Learning Rate:

Learning Rate:

Learning Rate:

| Gradient Arrows

|| Adjusted Gradient Arrows
| Momentum Arrows

|| Sum of Gradient Squared

Gradient Descent

te -2 z

1e :: :
_B ov] :

te -1 z

te -2 z
0990  [C

te -2 z
0995 |C
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~
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Step-by-5tep |
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https://github.com/lilipads/gradient_descent_viz

Comparing
Methods

* RMSProp and
ADAM can
handle the
saddle point
better

https://github.com/lilipads

/gradient descent viz
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