
Calculus in
Machine
Learning

Prof. Kuan-Ting Lai

2023/10/21

1

Calculus

• Calculus is the mathematical study of continuous change.

• Two major branches: Differential Calculus and Integral
Calculus

• We mainly use differential calculus in machine learning

2https://en.wikipedia.org/wiki/Calculus

https://en.wikipedia.org/wiki/Calculus

Definition of Derivative

• A function of a real variable f(x) is differentiable at a point x of its domain,
if its domain contains an open interval containing x and the limit exists.

• Derivative measures the “rate of change”

3

f ′ x = lim
△ x → 0

f x + △ x − f x − △ x

2 △ x

f ′ x = lim
△ x → 0

f x +△ x − f x

△ x

OR

Geometric Definition

• Average rate of change of y with respect to x over the interval.

4

Basic Rules

• Common derivative rules

5

Implement Differentiation

• Use a small value (0.001) to replace Δ

6Seth Weidman, “Deep Learning from Scratch,” O’Reilly Media, 2019

Derivative Function

• For any input function, calculate derivative using the definition

7

from typing import Callable

def deriv(func: Callable[[ndarray], ndarray],
 input_: ndarray,
 delta: float = 0.001) -> ndarray:
 '''
 Evaluates the derivative of a function "func" at every element in the
 "input_" array.
 '''
 return (func(input_ + delta) - func(input_ - delta)) / (2 * delta)

https://github.com/SethHWeidman/DLFS_code

https://github.com/SethHWeidman/DLFS_code

Nested Functions

•𝑦 = 𝑓2(𝑓1 𝑥)

8

The Chain Rule

• Chain rule is a formula that expresses the derivative of
the composition of two differentiable functions f and g in terms of
the derivatives of f and g

• Intuitively, the chain rule says that knowing change rate
of z vs. y and y vs. x, allows one to calculate change rate
of z vs. x as the product of the two rates of change.
−George F. Simmons: "If a car travels twice as fast as a bicycle and the

bicycle is 4 times as fast as a walking man, then the car travels 2 × 4 = 8
times as fast as the man."

9https://en.wikipedia.org/wiki/Chain_rule

https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/George_F._Simmons
https://en.wikipedia.org/wiki/Chain_rule

Illustration of the Chain Rule

• The derivative of the composite function should be a sort of product
of the derivatives of its constituent functions.

10

Implement the Chain Rule

11

def chain_deriv_2(chain: Chain, input_range: ndarray) -> ndarray:

 assert len(chain) == 2
 assert input_range.ndim == 1

 f1 = chain[0]
 f2 = chain[1]

 # df1/dx
 f1_of_x = f1(input_range)

 # df1/du
 df1dx = deriv(f1, input_range)

 # df2/du(f1(x))
 df2du = deriv(f2, f1(input_range))

 return df1dx * df2du

Chain Rule of the Square and Sigmoid

• Implement the Square and Sigmoid functions

12

Visualizing Functions and Derivatives

• Plot sigmoid(square(x)) and square(sigmoid(x))

13

PLOT_RANGE = np.arange(-3, 3, 0.01)

chain_1 = [square, sigmoid]
chain_2 = [sigmoid, square]

plot_chain(chain_1, PLOT_RANGE)
plot_chain_deriv(chain_1,
PLOT_RANGE)

plot_chain(chain_2, PLOT_RANGE)
plot_chain_deriv(chain_2,
PLOT_RANGE)

def plot_chain(ax, chain: Chain, input_range: ndarray) ->
None:
 assert input_range.ndim == 1, "Function requires a 1
dimensional ndarray as input_range"

 output_range = chain_length_2(chain, input_range)
 ax.plot(input_range, output_range)

def plot_chain_deriv(ax, chain: Chain, input_range: ndarray)
-> ndarray:
 output_range = chain_deriv_2(chain, input_range)
 ax.plot(input_range, output_range)

Original Functions and their Derivatives

f(x) = sigmoid(square(x)) f(x) = square(sigmoid(x))

14

Longer Chain Rule

• Let us try 3 functions

15

16

def chain_deriv_3(chain: Chain, input_range: ndarray) -> ndarray:
 # Uses the chain rule to compute the derivative of three nested functions:
 # (f3(f2(f1)))' = f3'(f2(f1(x))) * f2'(f1(x)) * f1'(x)
 assert len(chain) == 3, "This function requires 'Chain' objects to have length 3"

 f1 = chain[0]
 f2 = chain[1]
 f3 = chain[2]

 # f1(x)
 f1_of_x = f1(input_range)
 # f2(f1(x))
 f2_of_x = f2(f1_of_x)
 # df3du
 df3du = deriv(f3, f2_of_x)
 # df2du
 df2du = deriv(f2, f1_of_x)
 # df1dx
 df1dx = deriv(f1, input_range)

 # Multiplying these quantities together at each point
 return df1dx * df2du * df3du

Visualize Our Nested Functions

17

Functions with Two Inputs

• α(x, y) = x + y

18

Partial Derivative
• Partial derivative of a function of several variables is its derivative

with respect to one of those variables, with the others held constant

Example:

19

So at (1, 1), by substitution,

the slope is 3

https://en.wikipedia.org/wiki/Partial_derivative

https://en.wikipedia.org/wiki/Partial_derivative

Gradient

• An important example of a function of several variables is the case of a
scalar-valued function on a domain in Euclidean space .
In this case f has a partial derivative with respect to each variable xj.
At the point a, these partial derivatives define the vector

20

Total Derivative

• The chain rule has a particularly elegant statement in terms of total
derivatives. It says that, for two functions f and g, the total derivative
of the composite function g∘f at a satisfies

21https://en.wikipedia.org/wiki/Total_derivative

https://en.wikipedia.org/wiki/Total_derivative

Chain Rule for Two functions

22

https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of
_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions

https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions
https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions

Chain Rule for 2 Functions & 2 Variables

23

Derivative of Two-Input Function

24

Derivative of Two-Input Function

25

,

= 1
𝜕𝑓

𝜕𝑥
=

𝜕𝜎

𝜕𝑢
𝑎 𝑥, 𝑦 ∗

𝜕𝑎

𝜕𝑥
𝑥, 𝑦 =

𝜕𝜎

𝜕𝑢
𝑥 + 𝑦 ∗

𝜕𝑎

𝜕𝑥
𝑥, 𝑦

𝜕𝑓

𝜕𝑦
=

𝜕𝜎

𝜕𝑢
𝑎 𝑥, 𝑦 ∗

𝜕𝑎

𝜕𝑦
𝑥, 𝑦 =

𝜕𝜎

𝜕𝑢
𝑥 + 𝑦

Derivative of Two Inputs Function

26

def multiple_inputs_add_backward(x: ndarray,
 y: ndarray,
 sigma: Array_Function) -> float:
 '''
 Computes the derivative of this simple function with respect to both inputs.
 '''
 # Compute "forward pass"
 a = x + y

 # Compute derivatives

 dsda = deriv(sigma, a)

 dadx, dady = 1, 1

 return dsda*dadx, dsda*dady

Derivative of Multi-Inputs Function

• Dot product (or matrix multiplication) is a concise way to represent
many individual operations

27

Matrix Derivative

• “the derivative regarding a matrix” really means “the derivative
regarding each element of the matrix.”

28

Partial
Derivative

Vector Functions and Their Derivatives

29

def matmul_forward(X: ndarray, W: ndarray) -> ndarray:
 assert X.shape[1] == W.shape[0]
 # matrix multiplication
 N = np.dot(X, W)
 return N

def matmul_backward_first(X: ndarray, W: ndarray) -> ndarray:
 # backward pass
 dNdX = np.transpose(W, (1, 0))
 return dNdX

def matrix_forward_extra(X: ndarray, W: ndarray, sigma: Array_Function) -> ndarray:
 assert X.shape[1] == W.shape[0]
 # matrix multiplication
 N = np.dot(X, W)
 S = sigma(N)
 return S

Vector Functions and Their Derivatives

30

def matrix_function_backward_1(X: ndarray,
 W: ndarray,
 sigma: Array_Function) -> ndarray:
 assert X.shape[1] == W.shape[0]

 # matrix multiplication
 N = np.dot(X, W)

 # feeding the output of the matrix multiplication
 S = sigma(N)

 # backward calculation
 dSdN = deriv(sigma, N)

 # dNdX
 dNdX = np.transpose(W, (1, 0))

 # multiply them together; since dNdX is 1x1 here, order doesn't matter
 return np.dot(dSdN, dNdX)

Computational Graph with Two 2D Matrix Inputs

• What are the gradients of the output S with respect to X and W?

• Can we simply use the chain rule again?

31

X*W is a Matrix

• For the notion of a “gradient” regarding matrix outputs, we need to
sum the final array in the sequence so that the notion of “how much
will changing each element of X affect the output” will even make
sense.

32
Weidman, Seth. Deep Learning from Scratch: Building with Python from First Principles (pp. 30-31). O'Reilly Media.

def matrix_function_forward_sum(X: ndarray, W: ndarray,
 sigma: Array_Function) -> float:
 assert X.shape[1] == W.shape[0]

 # matrix multiplication
 N = np.dot(X, W)
 # feeding the output of the matrix multiplication through sigma
 S = sigma(N)
 # sum all the elements
 L = np.sum(S)
 return L

Sum Up the Matrix Output

• Add a sum up function Λ

33

34

def matrix_function_backward_sum_1(X: ndarray, W: ndarray,
 sigma: Array_Function) -> ndarray:
 assert X.shape[1] == W.shape[0]
 # matrix multiplication
 N = np.dot(X, W)
 S = sigma(N)
 # sum all the elements
 L = np.sum(S)

 # dLdS - just 1s
 dLdS = np.ones_like(S)
 # dSdN
 dSdN = deriv(sigma, N)
 # dLdN
 dLdN = dLdS * dSdN
 # dNdX
 dNdX = np.transpose(W, (1, 0))
 # dLdX
 dLdX = np.dot(dSdN, dNdX)

 return dLdX

Optimization

https://en.wikipedia.org/wiki/Optimization_problem

https://en.wikipedia.org/wiki/Optimization_problem

Gradient-based
Optimization

• Gradient Descent
(Cauchy, 1847):

Reduce f(x) by moving x
in small steps with
opposite sign of the
derivative

− 𝑓(𝑥 − 𝛼 ∗ 𝑓′ 𝑥)

36

Critical Points (Stationary Points)

• f’(x)=0

37

Local Minimum vs. Global Minimum

38

Second Derivative 𝑓′′(𝑥)

• Second Derivative 𝑓′′(𝑥) measures the curvature

39

Hessian Matrix

• denoted by H or, ∇2

40https://en.wikipedia.org/wiki/Hessian_matrix

https://en.wikipedia.org/wiki/Del_squared
https://en.wikipedia.org/wiki/Hessian_matrix

Maxima and Minima for Univariate Function

• If
𝑑𝑓(𝑥)

𝑑𝑥
= 0, it’s a minima or a maxima point, then we study the

second derivative:

− If
𝑑2𝑓(𝑥)

𝑑𝑥2 < 0 => Maxima

− If
𝑑2𝑓(𝑥)

𝑑𝑥2 > 0 => Minima

− If
𝑑2𝑓(𝑥)

𝑑𝑥2 = 0 => Point of reflection

Minima

Saddle Point

• A saddle point contains both positive and negative curvature.

42

𝑓 𝑥 = 𝑥1
2 − 𝑥2

2

How the Learning Goes Wrong

• If the learning rate is too big,
this oscillation diverges

• What we would like to achieve:
− Move quickly in directions with

small but consistent gradients.

− Move slowly in directions with
big but inconsistent gradients.

43Geoffrey Hinton et al., https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Select Training Samples

44

Momentum

• ∆𝑡← −𝛼 ∗ 𝑓′ 𝑥 + ∆𝑡−1 ∗ 𝜏

• 𝑤𝑡 ← 𝑤𝑡−1 + ∆𝑡

45https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325 c

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325

Adaptive Gradient algorithm (AdaGrad)

• Keeps track of the sum of gradient squared
− Σ𝑡 ← Σ𝑡−1 + 𝑓′ 𝑥 2

− ∆𝑡← −𝛼 ∗ 𝑓′ 𝑥 ∗
1

Σ𝑡

− 𝑤𝑡 ← 𝑤𝑡−1 + ∆𝑡

• In ML optimization, some features are very
sparse, so the average gradient is small
and training is slow.

• AdaGrad addresses this problem using this
idea: the more you have updated a feature
already, the less you will update it in the
future

46https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325 c

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325

Root Mean Square Propagation (RMSProp)

47

• AdaGrad is too slow

• RMSProp adds a decay rate 𝜀 for
updating gradient squared
− Σ𝑡 ← Σ𝑡−1 ∗ 𝜀 + 𝑓′ 𝑥 2 ∗ (1 − 𝜀)

− ∆𝑡← −𝛼 ∗ 𝑓′ 𝑥 ∗
1

Σ𝑡

− 𝑤𝑡 ← 𝑤𝑡−1 + ∆𝑡

Adaptive Moment Estimation (ADAM)

• Momentum +
RMSProp

• Lilipads GD
Viz tool

48

https://github.com/lilipads
/gradient_descent_viz

https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz

Comparing
Methods
• RMSProp and

ADAM can
handle the
saddle point
better

49

https://github.com/lilipads
/gradient_descent_viz

https://github.com/lilipads/gradient_descent_viz
https://github.com/lilipads/gradient_descent_viz

References

• https://en.wikipedia.org/wiki/Calculus

• Seth Weidman, “Deep Learning from Scratch,” Chapter 1, O'Reilly Media,
Inc., 2019

• Ian Goodfellow and Yoshua Bengio and Aaron Courville, “Deep Learning,”
Chapter 4, MIT Press, 2016

• https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-
methods-momentum-adagrad-rmsprop-adam-f898b102325

50

https://en.wikipedia.org/wiki/Calculus
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325

	Slide 1: Calculus in Machine Learning
	Slide 2: Calculus
	Slide 3: Definition of Derivative
	Slide 4: Geometric Definition
	Slide 5: Basic Rules
	Slide 6: Implement Differentiation
	Slide 7: Derivative Function
	Slide 8: Nested Functions
	Slide 9: The Chain Rule
	Slide 10: Illustration of the Chain Rule
	Slide 11: Implement the Chain Rule
	Slide 12: Chain Rule of the Square and Sigmoid
	Slide 13: Visualizing Functions and Derivatives
	Slide 14: Original Functions and their Derivatives
	Slide 15: Longer Chain Rule
	Slide 16
	Slide 17: Visualize Our Nested Functions
	Slide 18: Functions with Two Inputs
	Slide 19: Partial Derivative
	Slide 20: Gradient
	Slide 21: Total Derivative
	Slide 22: Chain Rule for Two functions
	Slide 23: Chain Rule for 2 Functions & 2 Variables
	Slide 24: Derivative of Two-Input Function
	Slide 25: Derivative of Two-Input Function
	Slide 26: Derivative of Two Inputs Function
	Slide 27: Derivative of Multi-Inputs Function
	Slide 28: Matrix Derivative
	Slide 29: Vector Functions and Their Derivatives
	Slide 30: Vector Functions and Their Derivatives
	Slide 31: Computational Graph with Two 2D Matrix Inputs
	Slide 32: X*W is a Matrix
	Slide 33: Sum Up the Matrix Output
	Slide 34
	Slide 35: Optimization
	Slide 36: Gradient-based Optimization
	Slide 37: Critical Points (Stationary Points)
	Slide 38: Local Minimum vs. Global Minimum
	Slide 39: Second Derivative f prime prime , open paren x close paren
	Slide 40: Hessian Matrix
	Slide 41: Maxima and Minima for Univariate Function
	Slide 42: Saddle Point
	Slide 43: How the Learning Goes Wrong
	Slide 44: Select Training Samples
	Slide 45: Momentum
	Slide 46: Adaptive Gradient algorithm (AdaGrad)
	Slide 47: Root Mean Square Propagation (RMSProp)
	Slide 48: Adaptive Moment Estimation (ADAM)
	Slide 49: Comparing Methods
	Slide 50: References

