Calculus in Machine Learning

Prof. Kuan-Ting Lai
2023/10/21

Calculus

- Calculus is the mathematical study of continuous change.
- Two major branches: Differential Calculus and Integral Calculus
- We mainly use differential calculus in machine learning

Definition of Derivative

- A function of a real variable $f(x)$ is differentiable at a point x of its domain, if its domain contains an open interval containing x and the limit exists.
- Derivative measures the "rate of change"

$$
\begin{gathered}
\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\Delta \mathrm{x} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})-\mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}} \\
\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\Delta \mathrm{x} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})-\mathrm{f}(\mathrm{x}-\Delta \mathrm{x})}{2 \Delta \mathrm{x}}
\end{gathered}
$$

Geometric Definition

- Average rate of change of y with respect to x over the interval.

Basic Rules

- Common derivative rules

$$
\begin{array}{ll}
\frac{d}{d x} x^{a}=a x^{a-1} & \frac{d}{d x} \sin (x)=\cos (x) \\
\frac{d}{d x} e^{x}=e^{x} . & \frac{d}{d x} \cos (x)=-\sin (x) . \\
\frac{d}{d x} a^{x}=a^{x} \ln (a), \quad a>0 & \frac{d}{d x} \tan (x)=\sec ^{2}(x)=\frac{1}{\cos ^{2}(x)}=1+\tan ^{2}(x) . \\
\frac{d}{d x} \ln (x)=\frac{1}{x}, \quad x>0 . & \frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}, \quad-1<x<1 . \\
\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}, \quad x, a>0 & \frac{d}{d x} \arccos (x)=-\frac{1}{\sqrt{1-x^{2}}}, \quad-1<x<1 . \\
& \frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}
\end{array}
$$

Implement Differentiation

- Use a small value (0.001) to replace Δ

$$
\frac{d f}{d u}(a)=\lim _{\Delta \rightarrow 0} \frac{f(a+\Delta)-f(a-\Delta)}{2 \times \Delta}
$$

$$
\frac{d f}{d u}(a)=\frac{f(a+0.001)-f(a-0.001)}{0.002}
$$

Derivative Function

- For any input function, calculate derivative using the definition

```
from typing import Callable
def deriv(func: Callable[[ndarray], ndarray],
    input_: ndarray,
    delta: float = 0.001) -> ndarray:
    Evaluates the derivative of a function "func" at every element in the
    "input_" array.
    return (func(input_ + delta) - func(input_ - delta)) / (2 * delta)
```


Nested Functions

- $y=f_{2}\left(f_{1}(x)\right)$

from typing import List

\# A Function takes in an ndarray as an argument Array_Function = Callable[[ndarray], ndarray]

```
# A Chain is a list of functions
Chain = List[Array_Function]
def chain_length_2(chain: Chain,
    a: ndarray) -> ndarray:
```

 Evaluates two functions in a row, in a "Chain".
 assert \(\operatorname{len}(\) chain \()==2, \\)
 "Length of input 'chain' should be 2"
 \(\mathrm{f1}=\operatorname{chain}[0]\)
 $\mathrm{f} 2=\operatorname{chain}[1]$
return $\mathrm{f} 2(\mathrm{f} 1(\mathrm{x})$)

The Chain Rule

- Chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g

$$
\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}
$$

- Intuitively, the chain rule says that knowing change rate of z vs. y and y vs. x, allows one to calculate change rate of $z \mathrm{vs} . x$ as the product of the two rates of change.
- George F. Simmons: "If a car travels twice as fast as a bicycle and the bicycle is 4 times as fast as a walking man, then the car travels $2 \times 4=8$ times as fast as the man."

Illustration of the Chain Rule

- The derivative of the composite function should be a sort of product of the derivatives of its constituent functions.

Implement the Chain Rule

```
def chain_deriv_2(chain: Chain, input_range: ndarray) -> ndarray:
    assert len(chain) == 2
    assert input_range.ndim == 1
    f1 = chain[0]
    f2 = chain[1]
    # df1/dx
    f1_of_x = f1(input_range)
# df1/du
df1dx = deriv(f1, input_range)
# df2/du(f1(x))
df2du = deriv(f2, f1(input_range))
return df1dx * df2du
df\mp@subsup{f}{2}{}

\section*{Chain Rule of the Square and Sigmoid}
- Implement the Square and Sigmoid functions



\section*{Visualizing Functions and Derivatives}

\section*{- Plot sigmoid(square(x)) and square(sigmoid(x))}
```

def plot_chain(ax, chain: Chain, input_range: ndarray) ->
None:
assert input_range.ndim == 1, "Function requires a 1
dimensional ndarray as input_range"
output_range = chain_length_2(chain, input_range)
ax.plot(input_range, output_range)

```
```

def plot_chain_deriv(ax, chain: Chain, input_range: ndarray)
-> ndarray:
output_range = chain_deriv_2(chain, input_range)
ax.plot(input_range, output_range)

```
```

PLOT_RANGE = np.arange(-3, 3, 0.01)
chain_1 = [square, sigmoid]
chain_2 = [sigmoid, square]
plot_chain(chain_1, PLOT_RANGE)
plot_chain_deriv(chain_1,
PLOT_RANGE)
plot_chain(chain_2, PLOT_RANGE)
plot_chain_deriv(chain_2,
PLOT_RANGE)

```

\section*{Original Functions and their Derivatives}

\(f(x)=\) square \((\operatorname{sigmoid}(x))\)


\section*{Longer Chain Rule}
- Let us try 3 functions
\[
\left.\frac{d f_{3}}{d u}(x)=\frac{d f_{3}}{d u}\left(f_{2}\left(f_{1}(x)\right)\right) \times \frac{d f_{2}}{d u}\left(f_{1}(x)\right) \times \frac{d f_{1}}{d u}(x)\right)
\]

def chain_deriv_3(chain: Chain, input_range: ndarray) -> ndarray:
    \# Uses the chain rule to compute the derivative of three nested functions:
    \# (f3(f2(f1)))' = f3'(f2(f1(x))) * f2'(f1(x)) * f1'(x)
    assert len(chain) == 3, "This function requires 'Chain' objects to have length 3"
    \(\mathrm{f} 1=\) chain[0]
    f2 \(=\) chain[1]
    f3 = chain[2]
    \# f1(x)
    f1_of_x = f1(input_range)
    \# f2(f1(x))
    f2_of_x = f2(f1_of_x)
    \# df3du
    df3du = deriv(f3, f2_of_x)
    \# df2du
    df2du = deriv(f2, f1_of_x)
    \# df1dx
    df1dx = deriv(f1, input_range)
    \# Multiplying these quantities together at each point
    return df1dx * df2du * df3du

\section*{Visualize Our Nested Functions}


\section*{Functions with Two Inputs}
- \(\alpha(x, y)=x+y\)


\section*{Partial Derivative}
- Partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant

\section*{Example:}
\(z=f(x, y)=x^{2}+x y+y^{2}\).
\(\frac{\partial z}{\partial x}=2 x+y\).
So at (1, 1), by substitution, the slope is 3

y

\section*{Gradient}
- An important example of a function of several variables is the case of a scalar-valued function \(f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d}\) a domain in Euclidean space \(\mathbb{R}^{n}\) In this case \(f\) has a partial derivative with respect to each variable \(x_{j}\). At the point a, these partial derivatives define the vector
\[
\nabla f(a)=\left(\frac{\partial f}{\partial x_{1}}(a), \ldots, \frac{\partial f}{\partial x_{n}}(a)\right) .
\]

\section*{Total Derivative}
- The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions \(f\) and \(g\), the total derivative of the composite function \(g \circ f\) at \(a\) satisfies
\[
d(g \circ f)_{a}=d g_{f(a)} \cdot d f_{a} .
\]

\section*{Chain Rule for Two functions}

Suppose that \(x=g(t)\) and \(y=h(t)\) are differentiable functions of \(t\) and \(z=f(x, y)\) is a differentiable function of \(x\) and \(y\). Then \(z=f(x(t), y(t))\) is a differentiable function of \(t\) and
\[
\begin{equation*}
\frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t} \tag{14.5.1}
\end{equation*}
\]
where the ordinary derivatives are evaluated at \(t\) and the partial derivatives are evaluated at \((x, y)\).

\section*{Chain Rule for 2 Functions \& 2 Variables}

Suppose \(x=g(u, v)\) and \(y=h(u, v)\) are differentiable functions of \(u\) and \(v\), and \(z=f(x, y)\) is a differentiable function of \(x\) and \(y\). Then, \(z=f(g(u, v), h(u, v))\) is a differentiable function of \(u\) and \(v\), and
\[
\begin{equation*}
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \tag{14.5.2}
\end{equation*}
\]
\[
\begin{equation*}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} . \tag{14.5.3}
\end{equation*}
\]


\section*{Derivative of Two-Input Function}
\[
f(x, y)=s(a(x, y)) \quad a=a(x, y)=x+y
\]


\section*{Derivative of Two-Input Function}
\[
f(x, y)=s(a(x, y)), a=a(x, y)=x+y
\]
\[
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial \sigma}{\partial u}(a(x, y)) * \frac{\partial a}{\partial x}((x, y))=\frac{\partial \sigma}{\partial u}(x+y) * \frac{\partial a}{\partial x}((x, y))=1 \\
& \frac{\partial f}{\partial y}=\frac{\partial \sigma}{\partial u}(a(x, y)) * \frac{\partial a}{\partial y}((x, y))=\frac{\partial \sigma}{\partial u}(x+y)
\end{aligned}
\]

\section*{Derivative of Two Inputs Function}
```

def multiple_inputs_add_backward(x: ndarray,
y: ndarray,
sigma: Array_Function) -> float:

```
    '''
    Computes the derivative of this simple function with respect to both inputs.
    ' \({ }^{\prime}\)
    \# Compute "forward pass"
    a = x + y
    \# Compute derivatives
    dsda = deriv(sigma, a)
    dadx, dady = 1, 1
    return dsda*dadx, dsda*dady

\section*{Derivative of Multi-Inputs Function}
- Dot product (or matrix multiplication) is a concise way to represent many individual operations


\section*{Matrix Derivative}
- "the derivative regarding a matrix" really means "the derivative regarding each element of the matrix."
\[
\begin{array}{lll}
\frac{\partial \nu}{\partial X}=\left[\begin{array}{lll}
\frac{\partial \nu}{\partial x_{1}} & \frac{\partial \nu}{\partial x_{2}} & \frac{\partial \nu}{\partial x_{3}}
\end{array}\right] & \frac{\partial \nu}{\partial X}=\left[\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right]=W^{T} \\
\frac{\partial \nu}{\partial x_{1}}=w_{1} & \text { Partial } & \text { Derivative } \\
\frac{\partial \nu}{\partial x_{2}}=w_{2} & \frac{\partial \nu}{\partial W}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=X^{T} \\
\frac{\partial \nu}{\partial x_{3}}=w_{3} & &
\end{array}
\]

\section*{Vector Functions and Their Derivatives}
```

def matmul_forward(X: ndarray, W: ndarray) -> ndarray:
assert X.shape[1] == W.shape[0]
\# matrix multiplication
N = np.dot(X, W)
return N

```

```

def matmul_backward_first(X: ndarray, W: ndarray) -> ndarray:
\# backward pass
dNdX = np.transpose(W, (1, 0))
\frac{\partial\nu}{\partialX}=[[$$
\begin{array}{lll}{\mp@subsup{w}{1}{}}&{\mp@subsup{w}{2}{}}&{\mp@subsup{w}{3}{}}\end{array}
$$]=\mp@subsup{W}{}{T}
return dNdX
def matrix_forward_extra(X: ndarray, W: ndarray, sigma: Array_Function) -> ndarray:
assert X.shape[1] == W.shape[0]
\# matrix multiplication
N = np.dot(X, W)
S = sigma(N)
return S

```

\section*{Vector Functions and Their Derivatives}
```

def matrix_function_backward_1(X: ndarray,
W: ndarray,
sigma: Array_Function) -> ndarray:
assert X.shape[1] == W.shape[0]
\# matrix multiplication
N = np.dot(X, W)
\# feeding the output of the matrix multiplication
S = sigma(N)
\# backward calculation
dSdN = deriv(sigma, N)
\# dNdX
dNdX = np.transpose(W, (1, 0))

```

```

 # multiply them together; since dNdX is 1x1 here, order doesn't matter
 return np.dot(dSdN, dNdX)
    ```

\section*{Computational Graph with Two 2D Matrix Inputs}
- What are the gradients of the output \(S\) with respect to \(X\) and \(W\) ?
- Can we simply use the chain rule again?
\[
X=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right] \quad W=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
w_{31} & w_{32}
\end{array}\right]
\]

\section*{\(\mathrm{X}^{*} \mathrm{~W}\) is a Matrix}
- For the notion of a "gradient" regarding matrix outputs, we need to sum the final array in the sequence so that the notion of "how much will changing each element of \(X\) affect the output" will even make sense.
\[
\begin{gathered}
\sigma(X * W)=\left[\begin{array}{cc}
\sigma\left(x_{11} * w_{11}+x_{12} * w_{21}+x_{13} * w_{31}\right) & \sigma\left(x_{11} * w_{12}+x_{12} * w_{22}+x_{13} * w_{32}\right) \\
\sigma\left(x_{21} * w_{11}+x_{22} * w_{21}+x_{23} * w_{31}\right) & \sigma\left(x_{21} * w_{12}+x_{22} * w_{22}+x_{23} * w_{32}\right) \\
\sigma\left(x_{31} * w_{11}+x_{32} * w_{21}+x_{33} * w_{31}\right) & \sigma\left(x_{31} * w_{12}+x_{32} * w_{22}+x_{33} * w_{32}\right)
\end{array}\right] \\
=\left[\begin{array}{ll}
\sigma\left(X W_{11}\right) & \sigma\left(X W_{12}\right) \\
\sigma\left(X W_{21}\right) & \sigma\left(X W_{22}\right) \\
\sigma\left(X W_{31}\right) & \sigma\left(X W_{32}\right)
\end{array}\right]
\end{gathered}
\]

\section*{Sum Up the Matrix Output}
- Add a sum up function \(\wedge\)

```

def matrix_function_forward_sum(X: ndarray, W: ndarray,
sigma: Array_Function) -> float:
assert X.shape[1] == W.shape[0]
\# matrix multiplication
N = np.dot(X, W)
\# feeding the output of the matrix multiplication through sigma
S = sigma(N)
\# sum all the elements
L = np.sum(S)
return L

```
```

def matrix_function_backward_sum_1(X: ndarray, W: ndarray,
sigma: Array_Function) -> ndarray:
assert X.shape[1] == W.shape[0]

matrix multiplication

N = np.dot(X, W)
S = sigma(N)

sum all the elements

L = np.sum(S)

dLdS - just 1s

dLdS = np.ones_like(S)

dSdN

dSdN = deriv(sigma, N)

dLdN

dLdN = dLdS * dSdN

```

```


dNdX

dNdX = np.transpose(W, (1, 0))

dLdX

dLdX = np.dot(dSdN, dNdX)
return dLdX

```

\section*{Optimization}

The standard form of a continuous optimization problem is \({ }^{[1]}\)
min. \(\underset{x}{\operatorname{minimize}} \quad f(x)\)
s.b.t. subject to
\[
\begin{aligned}
& g_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{aligned}
\]
where
- \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is the objective function to be minimized over the \(n\)-variable vector \(x\),
- \(g_{i}(x) \leq 0\) are called inequality constraints
- \(h_{j}(x)=0\) are called equality constraints, and
- \(m \geq 0\) and \(p \geq 0\).

\section*{Gradient-based Optimization}
- Gradient Descent (Cauchy, 1847):

\section*{Reduce \(f(x)\) by moving \(x\)} in small steps with opposite sign of the derivative
\[
-f\left(x-\alpha * f^{\prime}(x)\right)
\]


\section*{Critical Points (Stationary Points)}
- \(f^{\prime}(x)=0\)


Saddle point


\section*{Local Minimum vs. Global Minimum}


\section*{Second Derivative \(f^{\prime \prime}(x)\)}
- Second Derivative \(f^{\prime \prime}(x)\) measures the curvature


\section*{Hessian Matrix}
- denoted by H or, \(\underline{\nabla^{2}}\)
\[
\mathbf{H}_{f}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] .
\]

\section*{Maxima and Minima for Univariate Function}
- If \(\frac{d f(x)}{d x}=0\), it's a minima or a maxima point, then we study the second derivative:
\[
\begin{aligned}
& \text { - If } \frac{d^{2} f(x)}{d x^{2}}<0=>\text { Maxima } \\
& \text { - If } \frac{d^{2} f(x)}{d x^{2}}>0=>\text { Minima } \\
& \text { - If } \frac{d^{2} f(x)}{d x^{2}}=0=>\text { Point of reflection }
\end{aligned}
\]

Point of Inflection


\section*{Saddle Point}
- A saddle point contains both positive and negative curvature.
\[
f(x)=x_{1}^{2}-x_{2}^{2}
\]


\section*{How the Learning Goes Wrong}
- If the learning rate is too big, this oscillation diverges
- What we would like to achieve:
- Move quickly in directions with small but consistent gradients.
- Move slowly in directions with big but inconsistent gradients.


\section*{Select Training Samples}


\section*{Momentum}
- \(\Delta_{t} \leftarrow-\alpha * f^{\prime}(x)+\Delta_{t-1} * \tau\)
- \(w_{t} \leftarrow w_{t-1}+\Delta_{t}\)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325 c 45

\section*{Adaptive Gradient algorithm (AdaGrad)}
- Keeps track of the sum of gradient squared
\[
\begin{aligned}
& -\Sigma_{t} \leftarrow \Sigma_{t-1}+\left\{f^{\prime}(x)\right\}^{2} \\
& -\Delta_{t} \leftarrow-\alpha * f^{\prime}(x) * \frac{1}{\sqrt{\Sigma_{t}}} \\
& -w_{t} \leftarrow w_{t-1}+\Delta_{t}
\end{aligned}
\]
- In ML optimization, some features are very sparse, so the average gradient is small and training is slow.
- AdaGrad addresses this problem using this idea: the more you have updated a feature already, the less you will update it in the future

\section*{Root Mean Square Propagation (RMSProp)}
- AdaGrad is too slow
- RMSProp adds a decay rate \(\varepsilon\) for updating gradient squared
\[
\begin{aligned}
& -\Sigma_{t} \leftarrow \Sigma_{t-1} * \varepsilon+\left\{f^{\prime}(x)\right\}^{2} *(1-\varepsilon) \\
& -\Delta_{t} \leftarrow-\alpha * f^{\prime}(x) * \frac{1}{\sqrt{\Sigma_{t}}} \\
& -w_{t} \leftarrow w_{t-1}+\Delta_{t}
\end{aligned}
\]


\section*{Adaptive Moment Estimation (ADAM)}

\section*{- Momentum + RMSProp \\ - Lilipads GD Viz tool}
https://github.com/lilipads /gradient descent viz


\section*{Comparing Methods}
- RMSProp and ADAM can handle the saddle point better
https://github.com/lilipads /gradient descent viz


\section*{References}
- https://en.wikipedia.org/wiki/Calculus
- Seth Weidman, "Deep Learning from Scratch," Chapter 1, O'Reilly Media, Inc., 2019
- Ian Goodfellow and Yoshua Bengio and Aaron Courville, "Deep Learning," Chapter 4, MIT Press, 2016
- https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325```

