oo’ "
','.-' L
S -
Wik @ > ¢
o T
R
Mt

ok GO TERNOLE
o2 AL L AR
ARRO AT . --n
SEV g
roonied AR ek €
AMITLE AUTENL A
e

ARII) N

e O T Ay s
SYiNTATED i 35

BT

bl A% FETTIOWTL A

TR TN o,
Ve s . “bive

5% i Therasn
[T g
.b:‘ o T 1
A‘.- n”h ‘:'. | XY
’
Tt sy
,\.r«-.}i“_,':‘y .

L) "leg
o’

DeepFake (Intro)

https://www.youtube.com/watch?v=T76bK2t2r8g

Generative Recurrent Networks

* Douglas Eck (2002), Music Generation using LSTM

* Alex Graves, “Generating Sequences With Recurrent Neural
Networks,” arXiv (2013), https://arxiv.org/abs/1308.0850.

https://arxiv.org/abs/1308.0850

Text Generation with LSTM

Probability
distribution for the Ssampled next
Initial text Initial text next character character

The cat sat on the m — LangLage _,| Sampling
model I - strategy

]_~ a

/ Language Sampling
The cat sat on the ma — I . — t
[J

model strategy

Sampling Strategy

* Greedy sampling: select the one with highest possibility
e Stochastic sampling
* More randomness -> more surprises

Temperature

* Reweighting a probability distribution

import numpy as np

def reweight distribution(original distribution, temperature=0.5):
distribution = np.log(original distribution) / temperature
distribution = np.exp(distribution)
return distribution / np.sum(distribution)

Higher Temperature = More Randomness

temperature = 0.01 temperature = 0.2 temperature = 0.4

s,
" o
| |
o
oy LA
- | 0 i i 0 i » % i . 5 0 . . ‘a

Discrete elements (characters)

Probability of sampling element
e

temperature = 0.6 temperature = 0.8 temperature = 1.0

Generating Text of Nietzsche

e That which does not kill us makes us stronger.
* Man is the cruelest animal.

* Sometimes people don’t want to hear the truth
because they don’t want their illusions
destroyed.

e The true man wants two things: danger and
play. For that reason he wants woman, as the
most dangerous plaything.

Character-level LSTM Text Generation

 Download training data

* Things to note:
— At least 20 epochs are required before the generated text starts sounding coherent.
— If you try this script on new data, make sure your corpus
— has at least ~100k characters. ~1M is better.

import keras
import numpy as np

path = keras.utils.get file(
'nietzsche.txt’,
origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt')
text = open(path).read().lower()
print('Corpus length:', len(text))

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lIstm.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lstm.ipynb

Convert Characters into Indices

* 57 unique characters in the data

chars = sorted(list(set(text)))

print('total chars:', len(chars))

char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))

le> python .\Istm_text_generation.py
ault/dso_loader.cc:44] Successfully opened dynamic library cudart64

Vectorizing Sequences of Characters

You'll extract sequences
of 60 characters.
maxlen = 60]
You’ll sample a new sequence

step = 3 4 every three characters.

sentences = [] <+—— Holds the extracted sequences

next_chars = [] = Holds the targets (the
for i in range(0, len(text) - maxlen, step): follow-up characters)

sentences.append(text[i: i1 + maxlen]) . .
List of unique characters

next_chars.append (text[i + maxlen]) in the corpus

print ('Number of sequences:', len(sentences)) Dictinnar}' that maps

chars = sorted(list(set(text))) S — u"_ique c'haracte:rs to their
index in the list “chars”

print ('Unique characters:', len(chars))

char indices = dict((char, chars.index(char)) for char in chars) =«

print ('Vectorization...')
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)

v = np.zeros((len(sentences), len(chars)), dtype=np.bool)

for i, sentence in enumerate(sentences): One-hot encodes
the characters

for t, char in enumerate(sentence): . .
into blnary arrays

x[1i, t, char indices[char]] = 1

v[i, char_indices[next_chars[i]]] =1

Building the Network

from keras import layers

model = keras.models.Sequential()

model.add(layers.LSTM(128, input shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss="'categorical crossentropy', optimizer=optimizer)

Training & Sampling the Language Model

1. Drawing from the model a probability distribution over the
next character given the text available

2. Reweighting the distribution to a certain "temperature”

3. Sampling the next character at random according to the
reweighted distribution

4. Adding the new character at the end of the available text

Sampling Next Characters

def sample(preds, temperature=1.0):
preds = np.asarray(preds).astype('float64d"’)
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1l, preds, 1)
return np.argmax(probas)

Text-generation Loop

import random

import sys qJ Trains the model for 60 epochs

for epoch in range(l, 60): Fits the model for one iteration
print('epoch', epoch) J on the data
model.fit(x, v, batch size=128, epochs=1l) <
start_index = random.randint (0, len(text) - maxlen - 1) Selects a text
generated_text = text[start_index: start_index + maxlen] seed at
print ('-—-- Generating with seed: "' + generated_text + '"') random
for temperature in [0.2, 0.5, 1.0, 1.2]: < Tries a range of different

print('-————- Cemperature: ', temperature) sampling temperatures

sys.stdout.wrlte(generated_ text)

Text-generation Loop (Cont’d)

Generates 400 —+ for 1 in range(400):

characters, sampled = np.zeros((l, maxlen, len(chars))) One-hot encodes
starting from for t, char in enumerate(generated_ text) : the characters
the seed text sampled([0, t, char_indices[char]] = 1. generated so far
preds = model.predict (sampled, verbose=0)[0] Samples
next_index = sample(preds, temperature) the next
next char = chars[next index] character

generated_text += next_char
generated_text = generated_text[1l:]

sys.stdout.write(next_char)

Results of Epoch 60

Epoch 60/60

199936/200285 [============================>] - ETA: Os - loss: 1.2384

----- Generating text after Epoch: 59

----- diversity: 0.2

----- Generating with seed: "ange an opinion about any one, we charge"

ange an opinion about any one, we charger and the sense of the factity of the sense of the sense of the
continuation of the sense of the sense of the heart and superstitions, and in the sense of the sense of the
most spirit of the sense of the sense of the sense of the most portentous and as the sense of the sense of the
sense of the sense of the heart and self-distrust of the sense of the sense of the sense of the sense of the
sense of

----- diversity: 0.5

----- Generating with seed: "ange an opinion about any one, we charge"

ange an opinion about any one, we charges and contempleting and self-delight and in the sensive reports in
the portent and morality of the sense of a fainh purpose of the effective century and that struckon and be
conceptions and disposition of them as the sense of the fact that is the sense. the most foreign and the best
and

who has almost science in the people more secret to the survivaling some man the belief in the other hand

Implementing DeepDream in Keras

from keras.applications import inception_ w3 You won’t be training the model. so
. ¥

trom keras 1mport backend as K this command disables all training-

K.set_learning phase(0) . specific operations.

model = inception v3.InceptionV3 (weights='imagenet', Builds the Inception Y3 network,

include_ top=False) without its convolutional base.
The model will be loaded with

pretrained ImageNet weights.

Configuring DeepDream

laye%" —“:Dﬂtrfbumaﬂg =1 < Dictionary mapping layer names to a coefficient quantifying
lm}xe‘j‘? - 0.2, how much the layer’s activation contributes to the loss
m!leﬂ RN you’ll seek to maximize. Note that the layer names are
'm}}ﬂ?d‘i 't 2., hardcoded in the built-in Inception V3 application. You can
'‘'mixed>': 1.5, list all layer names using model.summary().

Defining the Loss

Creates a dictionary that maps
layer names to layer instances

layer_dict = dict([(layer.name, laver) for layer

loss = K.variable(0.)
for layer_name 1n laver_ contributions:

coeff = layer_ contributions[layer_ name]
— activation = layer_dict[layer_name] .output

scaling = K.prod(K.cast (K.shape(activation),
loss += coeff * K.sum(K.square(activation|:,

Retrieves the layer’s output

only involving nonborder pixels in the loss.

Adds the L2 norm of the features of a layer

in model.lavers])
You’ll define the loss by adding

layer contributions to this
scalar variable.

'float32'))
2: -2, 2: -2, :1)) / scaling«a—

to the loss. You avoid border artifacts by

This tensor holds the d .
generated image: the dream. Gradient-ascent Process Computes the gradients of the

dream with regard to the loss

dream = model.input
grads = K.gradients(loss, dream) [0] < Normalizes the gradients
grads /= EK.maximum(EK.mean (K.abs(grads)), le-7) <] (annﬁmnttﬂdﬂ
outputs = [loss, grads]
fetch loss _and grads = K.function([dream], outputs) Sets up a Keras function
to retrieve the value of
def eval_loss_and_grads(x): the loss and gradients,
outs = fetch_loss_and_grads([x]) given an input image
loss_wvalue = outs[0]
grad_values = outs[1]
return loss_wvalue, grad_values
def gradient_ascent(x, lterations, step, max_ loss=None) :
for 1 in range(iterations) :
loss_walue, grad_wvalues = eval_loss_and_grads (x) This function runs
if max loss is not None and loss_value > max loss: gradient ascent for a
break number of iterations.
print('...Loss value at', 1, ':', loss_wvalue)
¥ += step * grad_values

return x

DeepDream Process: Scaling and Detail Reinjection

|
|

Detail
Detail reinjection
reinjection

Octave 2 N
Octave 3

Running Gradient Ascent over Different Successive
Scales

Playing with these hyperparameters Gradient ascent step size

will let you achieve new effects.

%

Number of scales at which to run

, gradient ascent
import numpy as np

step = 0.01 I Size ratio between scales

num_octave = 3 < Number of ascent steps to

octave_scale = 1.4 < run at each scale

iterations = 20 h If the loss grows larger than 10, you'll interrupt
max loss = 10. 4 the gradient-ascent process to avoid ugly artifacts.
base image path = '...' <—— Fill this with the path to the image you want to use.

img = preprocess_image(base_lmage_path) Loads the base image into a Numpy

array (function is defined in listing 8.13)

original_ shape = img.shape[l:3]

successive_shapes = [original_shape] Prepares a list of shape

tuples defining the different
scales at which to run
gradient ascent

for i in range(l, num_octave):
shape = tuple([int(dim / (octave_scale ** 1))
for dim in original_shape])
successive_shapes.append (shape)

Reverses the list of

successive_shapes = successive_shapes[::-1] ?h3F95f°theYWEi"
increasing order
original img = np.copy(img)
shrunk original img = resize img(img, successive_ shapes[0])
Scales up
the | for shape in successive_shapes: Resizes the N_”'“PT
(-iream print ('Processing image shape', shape) array of the image
image img = resize img(img, shape) to the smallest scale
img = gradient_ascent (img,
R di iterations=iterations Scales up the smaller
uns g"la lent ctepoote ' version of the original
ascent, altering P P image: it will be pixellated.
the dream max_loss=max_loss)

upscaled shrunk original img = resize img(shrunk original_ img, shape)
I same size original = resize img(original img, shape)
lost_detail = same_size original - upscaled shrunk original_ img =——0o0

img += lost_detail <}
shrunk original img = resize img(original img, shape)

save_img(img, fname='dream_at_scale ' + str(shape) + '.png')

save_img(img, fname='final_ dream.png')

Reinjects lost detail into the dream
Computes the high-quality version

of the original image at this size

The difference between the two is the
detail that was lost when scaling up.

-~

" » WY 4 (.\"m:‘¢~' "
k. _ o -
»

. 3 -
» -

Neural Style Transfer

* Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural
Algorithm of Artistic Style,” arXiv (2015), https://arxiv.org/abs/1508.06576 .

Content target Style reference Combination image

https://arxiv.org/abs/1508.06576

Prisma Photo Editor [iz2+]
Art Filters & Photo Effects
Prisma labs, inc.

4.7, 95.5K Ratings

Free . Offers In-App Purchases

Screenshots iphone ipad

Turn photos 300+ filters Adjust to New filters
into art available perfection released daily

ey

LN

| A
RE. &

Style Reconstructions

O Style D

Representations

[
Input image [>

Content =
Representations ||

Content Reconstructions

Content Loss + Style Loss

e Using pre-trained model (VGG)

e Content Loss
o 1 2
ﬁcontent(p- €r, [) — 3 Z (EIJ o]jll_))

* The style representations simply coir%\pute the correlations between

different convolution layers, correlation is calculated by Gram matrix
L

1
= v 2 G4 Laeld) = 3wk

1,7 ‘ [=0
— —3 —

Etami UF {T ?) — Qﬁmntent (IJ’-. 'I') _|_ _-ilgﬁstyie(ﬁ-. ;’17)

Style loss

Conv layer Conv layer <__Q<7 Conv layer

[
T Content loss T $ T

Conv layer —>Of: Conv layer Conv layer

|
T T ¢ Style loss T
Conv layer Conv layer | _O<7 Conv layer

Composite |
Image

Content
Image

https://d2l.ai/chapter computer-vision/neural-style.html Total variation loss

https://d2l.ai/chapter_computer-vision/neural-style.html

Example

* https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.3-neural-style-transfer.ipynb

4

AN E S\
KR
£

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.3-neural-style-transfer.ipynb

Generating Images with Variational Auto-encoder

-+ Training data

Learning
process

o - -{ Generator / Decoder
Vector from the ﬁ_urtificial
Latent space latent space image
of images

(a vector space)

The Smile Vector

Auto-encoder

* Learn compressed representation of input x

A -

Original
input x

Encoder

EE

Compressed
representation

Decoder

—

Reconstructed

input x

Variational Auto-encoder

* Assume images are generated by a statistical process
 Randomness of this process is considered during encoding and decoding

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.4-generating-images-with-vaes.ipynb

Distribution over latent
space defined by z_mean
Input image and z_log_var

—-[Encoder J—»
Reconstructed

l image

<2

Point randomly
sampled from
the distribution

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.4-generating-images-with-vaes.ipynb

Pseudo Code of Encode and Decoder

Encode the input into a mean and variance parameter
Zz_mean, z_log variance = encoder(input_img)

Draw a latent point using a small random epsilon
z = z_mean + exp(z_log variance) * epsilon

Then decode z back to an image
reconstructed img = decoder(z)

Instantiate a model
model = Model(input _img, reconstructed img)

Then train the model using 2 losses:
a reconstruction loss and a regularization loss

import keras
from keras import layers EnCOder
from keras import backend as K
from keras.models import Model
import numpy as np

img shape = (28, 28, 1)
batch size = 16
latent _dim = 2 # Dimensionality of the latent space: a plane

input img = keras.Input(shape=img_ shape)

= layers.Conv2D(32, 3, padding='same', activation='relu')(input img)

= layers.Conv2D(64, 3, padding='same', activation='relu', strides=(2, 2))(x)
= layers.Conv2D(64, 3, padding='same', activation='relu')(x)

= layers.Conv2D(64, 3, padding='same', activation='relu')(x)

shape_before flattening = K.int_shape(x)

X X X X

X
X

layers.Flatten()(x)
layers.Dense(32, activation='relu')(x)

z mean = layers.Dense(latent_dim)(x)
z log var = layers.Dense(latent _dim)(x)

Sampling

* In Keras, everything needs to be a layer, so code that isn't part of a built-
in layer should be wrapped in a Lambda (or else, in a custom layer).

def sampling(args):
z mean, z _log var = args
epsilon = K.random normal(shape=(K.shape(z_mean)[@], latent dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log var) * epsilon

z = layers.Lambda(sampling)([z_mean, z_log var])

Decoder

This is the input where we will feed "z .
decoder_input = layers.Input(K.int shape(z)[1:])

Upsample to the correct number of units
x = layers.Dense(np.prod(shape_before flattening[1:]), activation='relu')(decoder_input)

Reshape into an image of the same shape as before our last Flatten layer

x = layers.Reshape(shape_before flattening[1:])(x)

We then apply then reverse operation to the initial stack of convolution layers:

a Conv2DTranspose layers with corresponding parameters.

x = layers.Conv2DTranspose(32, 3, padding='same', activation='relu', strides=(2, 2))(x)
x = layers.Conv2D(1, 3, padding='same', activation='sigmoid') (x)

This is our decoder model.
decoder = Model(decoder input, x)

We then apply it to "z° to recover the decoded "z .
z _decoded = decoder(z)

class CustomVariationallayer(keras.layers.Layer):

def vae loss(self, x, z decoded):
x = K.flatten(x)
z decoded = K.flatten(z decoded)
xent_loss = keras.metrics.binary_ crossentropy(x, z decoded)
kl loss = -5e-4 * K.mean(
1 + z log var - K.square(z_mean) - K.exp(z_log var), axis=-1)
return K.mean(xent_loss + kl 1loss)

def call(self, inputs):
X = inputs[0]
z _decoded = inputs[1]
loss = self.vae loss(x, z_decoded)
self.add loss(loss, inputs=inputs)
We don't use this output.
return Xx

We call our custom layer on the input and the decoded output,
to obtain the final model output.
y = CustomVariationallLayer()([input_img, z_decoded])

raining VAE

 We don’t pass target data during training (only pass x_train to the model in fit)

vae = Model(input _img, y)
vae.compile(optimizer="rmsprop', loss=None)
vae.summary()

Train the VAE on MNIST digits
(x_train,), (x_test, y test) = mnist.load data()

x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype('float32') / 255.

x_test = x_test.reshape(x_test.shape + (1,))

vae.fit(x=x_train, y=None, shuffle=True, epochs=10, batch size=batch_size,
validation data=(x_test, None))

Use Decoder to Turn Latent Vectors into Images

import matplotlib.pyplot as plt
from scipy.stats import norm

Display a 2D manifold of the digits

n =15 # figure with 15x15 digits

digit size = 28

figure = np.zeros((digit size * n, digit size * n))

Linearly spaced coordinates on the unit square transformed via the inverse CDF (ppf) of the Gaussian
to produce values of the latent variables z, since the prior of the latent space is Gaussian

grid x = norm.ppf(np.linspace(0.05, ©0.95, n))

grid y = norm.ppf(np.linspace(0.05, ©0.95, n))

for i, yi in enumerate(grid x):
for j, xi in enumerate(grid y):
z_sample = np.array([[xi, yi]])
z sample = np.tile(z_sample, batch size).reshape(batch _size, 2)
Xx_decoded = decoder.predict(z_sample, batch size=batch size)
digit = x_decoded[@].reshape(digit size, digit size)
figure[i * digit size: (i + 1) * digit size, j * digit size: (j + 1) * digit size] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys r')
plt.show()

T4 88853999939 VYOOD
Tordadd 49999V
oo ddasdassvovwe
oo ewete

0

40

350

0

30

oo NN e e
oo) Ny e e e
oMM hHh e
Trococmnnmnminiglglhy iy L
TR Emmnntnbhhhhy L1
PR moiinlglyty 'y, WE
™ N B B Be 0o 0o 0o Og O O B S N\
BN DN D B B 0o 0o 0o Og Og Oy O & \
B O\ O\ O\ O OwOm 0o Do Og Og By By N N\
B DN O\ DN DN O On 06 On Gn G Sy Sy N N B

250

200

B B O O O s O s e e ey, Yy, N

Generative Adversarial Networks (GAN)

There are many interesting recent
development in deep learning...The most
important one, in my opinion, is
adversarial training (also called GAN for
Generative Adversarial Networks). This,
and the variations that are now being
proposed, is the most interesting idea in
the last 10 years in ML.

Yann LeCun

https://www.youtube.com/watch?v=9JpdAg6uMXs
https://arxiv.org/abs/1701.00160

Generative Adversarial Networks (GAN)

e |lan Goodfellow

Training set

Discriminator

Random
noise &

fEl B
whiztio bt

{Fa ke

Generator Fake image

48

Bag of Tricks for Training GANSs

* Use tanh as the last activation in the generator, instead of sigmoid
* Sample points from the latent space using a normal distribution

* Stochasticity is good to induce robustness. Introducing randomness during
training helps prevent GAN to get stuck.

— Use dropout in the discriminator
— Add some random noise to the labels for the discriminator.

* Sparse gradients can hinder GAN training. There are two things that can
induce gradient sparsity: 1) max pooling operations, 2) ReLU activations.

— Use strided convolutions for downsampling
— Use LeakyRelLU, which allows small negative activation values.

* In generated images, it is common to see "checkerboard artifacts" caused
by unequal coverage of the pixel space in the generator.

— Use a kernel size that is divisible by the stride size

Train a GAN of Frog

e Use frog images from CIFAR10
— 50,000 32x32 RGB images belong to 10 classes (5,000 images per class).

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.5-introduction-to-gans.ipynb

airplane ﬁ.% > ..=;i
automobile EE‘B‘
bird TmilE V& yERN

« EROESEEE P
o WIS RS

- EESHEB R
oo I 1
e R 3 9 I S R
oo e e
o D

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.5-introduction-to-gans.ipynb

latent _dim = 32; height = 32; width = 32; channels = 3

generator input = keras.Input(shape=(latent_dim,))

X X X #H
I

X #+H

X X

X X X X #H

#
X

First, transform the input into a 16x16 128-channels feature map
layers.Dense(128 * 16 * 16)(generator input)
layers.LeakyReLU() (x)

layers.Reshape((16, 16, 128))(x)

Then, add a convolution layer
= layers.Conv2D(256, 5, padding='same")(x)
layers.LeakyReLU() (x)

Upsample to 32x32
= layers.Conv2DTranspose(256, 4, strides=2, padding='same')(x)
= layers.LeakyReLU() (x)

Few more conv layers

= layers.Conv2D(256, 5, padding='same")(x)
layers.LeakyReLU() (x)

layers.Conv2D(256, 5, padding='same")(x)
layers.LeakyReLU() (x)

Produce a 32x32 1-channel feature map
= layers.Conv2D(channels, 7, activation='tanh', padding="same") (x)

generator = keras.models.Model(generator input, x)
generator.summary()

Generator

discriminator_input = layers.Input(shape=(height, width, channels))
= layers.Conv2D(128, 3)(discriminator_input)
= layers.LeakyReLU() (x)

= layers.Conv2D(128, 4, strides=2)(x)

= layers.LeakyReLU() (x)

layers.Conv2D(128, 4, strides=2)(x)

= layers.LeakyReLU() (x)

= layers.Conv2D(128, 4, strides=2)(x)

= layers.LeakyReLU() (x)

= layers.Flatten()(x)

One dropout layer - important trick! Discrlminator

= layers.Dropout(0.4)(x)

X X X X X X X X X
I

3+

X

Classification layer
x = layers.Dense(1l, activation='sigmoid"') (x)

discriminator = keras.models.Model(discriminator_input, x)
discriminator.summary()

To stabilize training, we use learning rate decay

and gradient clipping (by value) in the optimizer.

discriminator_optimizer = keras.optimizers.RMSprop(lr=0.0008, clipvalue=1.0, decay=1e-8)
discriminator.compile(optimizer=discriminator_optimizer, loss='binary crossentropy')

Freeze Discriminator When Training Generator

 We'll train discriminator and generator alternately

Set discriminator weights to non-trainable
(will only apply to the “gan model)
discriminator.trainable = False

gan_input = keras.Input(shape=(latent dim,))
gan_output = discriminator(generator(gan_input))
gan = keras.models.Model(gan_ input, gan_output)

gan_optimizer = keras.optimizers.RMSprop(1lr=0.0004, clipvalue=1.0, decay=1e-8)
gan.compile(optimizer=gan optimizer, loss='binary crossentropy')

Training DCGAN

* for each epoch:
—Draw random points in the latent space (random noise).
—Generate images with ‘generator using this random noise.
—Mix the generated images with real ones.

—Train discriminator using these mixed images, with corresponding
targets, either "real" (for the real images) or "fake" (for the generated
images).

—Draw new random points in the latent space.

—Trains the generator to fool the discriminator => train ‘gan using these
random vectors, with targets that all say "these are real images".

for step in range(iterations):
Sample random points in the latent space
random_latent vectors = np.random.normal(size=(batch_size, latent _dim))
Decode them to fake images
generated images = generator.predict(random_latent vectors)
Combine them with real images
stop = start + batch_size
real images = x_train[start: stop]
combined _images = np.concatenate([generated images, real images])
Assemble labels discriminating real from fake images
labels = np.concatenate([np.ones((batch _size, 1)), np.zeros((batch size, 1))])
Add random noise to the labels - important trick!
labels += 0.05 * np.random.random(labels.shape)
Train the discriminator
d loss = discriminator.train_on_batch(combined images, labels)
sample random points in the latent space
random_latent vectors = np.random.normal(size=(batch_size, latent _dim))
Assemble labels that say "all real images"
misleading targets = np.zeros((batch size, 1))
Train the generator (via the gan model,
where the discriminator weights are frozen)
a_loss = gan.train_on_batch(random_ latent vectors, misleading targets)

Generated Frog Images

Other Advanced GAN Models

* TensorFlow Tutorial / Generative
1. Pixel-2-Pixel

2. CycleGAN

3. Adversarial FGSM

https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

Pix2Pix

* Phillip Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, 2018

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo
AN

\

output

https://arxiv.org/abs/1611.07004

Training Conditional GAN

* Both the generator and discriminator observe the input edge map
e Use U-Net and PatchGAN discriminator

45

G

G(x)

D

S —iHHI—»fake

Y

‘

—Hﬂﬂ—» real

L1+ cGAN

Ground truth

,H Il _H |

Applications based on Pix-2-Pix

#edges2cats by Christopher Hesse

—
R

e

sketch by by Isai

Backeround removal

by Kaihu Chen

Sketch — Pokemon

SN

by Bertrand Gondouin

Palette generation

by Jack Qiao
“Do as | do”

by Brannon Dorsey

Sketch— Portrait

by Mario Klingemann

#fotogenerator

7 |[Hem |
S

1 J—

I‘ \/ \

N El=l

sketch by Yann LeCun

Design of Generator and Discriminator

Generator Discriminator
Tg;gge; Input Image -Irri;%t:.: Input Image
Eln‘e@ Generator

Mean Absolute .
Discriminator

Error

r—-—=—=-=-=-=-=-=-=-== ===1

I I
: Discriminator Discriminator .
1 np—

/ All 1s

All 1s / All 0s

Lambda

Sigmoid Cross
Entropy Sigmoid Cross Sigmoid Cross
Entropy Entropy

Apply
Gradients

Apply
Gradients

https://www.tensorflow.org/tutorials/generative/pix2pix

https://www.tensorflow.org/tutorials/generative/pix2pix

CycleGAN

 Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2018

e Learn to automatically “translate” an image from one into the other and vice versa

__ Monet +— Photos S ‘Zebras Horses» -~ Summer Z_ Winter

Photograph | an Gogh - zanne

https://arxiv.org/abs/1703.10593

Model of CycloneGAN

* Two mapping functionsG: X > YandF:Y - X

* Two cycle consistency losses:
— Forward cycle-consistency loss: x - G(x) 2 F(G(x)) = x
— Backward cycle-consistency loss: y = F(y) = G(F(y)) =y

¢ X ARy
[- —
Dx Dy | Y N 2] X Y
X /\ Y X Y A } Y c‘}-'cle—consist.ency
\/ cycle-consistency | ... \ o > 3\ s loss

F loss

Ground truth

2pix

X

p1

ycleGAN

Al
-

C

feature loss GA SimAN

CoGAN

1GAN

B

Adversarial Attack

e Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015
* Fast Gradient Signed Method (FGSM)

+.007 x =
: T +
’ Vel 928)) cgn(v,J(0,2,9))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

https://www.tensorflow.org/tutorials/generative/adversarial fesm

https://arxiv.org/abs/1412.6572
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

References

* Francois Chollet, “Deep Learning with Python,” Chapter 8
 https://www.tensorflow.org/tutorials/generative/

https://www.tensorflow.org/tutorials/generative/

