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DeepFake (Intro)

https://www.youtube.com/watch?v=T76bK2t2r8g


Generative Recurrent Networks

• Douglas Eck (2002), Music Generation using LSTM

• Alex Graves, “Generating Sequences With Recurrent Neural 
Networks,” arXiv (2013), https://arxiv.org/abs/1308.0850.

https://arxiv.org/abs/1308.0850


Text Generation with LSTM



Sampling Strategy

• Greedy sampling: select the one with highest possibility

• Stochastic sampling

• More randomness -> more surprises



Temperature

• Reweighting a probability distribution

import numpy as np
def reweight_distribution(original_distribution, temperature=0.5):

distribution = np.log(original_distribution) / temperature
distribution = np.exp(distribution)
return distribution / np.sum(distribution)



Higher Temperature = More Randomness



Generating Text of Nietzsche

• That which does not kill us makes us stronger.

• Man is the cruelest animal.

• Sometimes people don’t want to hear the truth 
because they don’t want their illusions 
destroyed.

• The true man wants two things: danger and 
play. For that reason he wants woman, as the 
most dangerous plaything.



Character-level LSTM Text Generation

• Download training data

• Things to note:
− At least 20 epochs are required before the generated text starts sounding coherent.
− If you try this script on new data, make sure your corpus
− has at least ~100k characters. ~1M is better.

import keras
import numpy as np

path = keras.utils.get_file(
'nietzsche.txt',
origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt')

text = open(path).read().lower()
print('Corpus length:', len(text))

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lstm.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lstm.ipynb


Convert Characters into Indices

• 57 unique characters in the data

chars = sorted(list(set(text)))
print('total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))



Vectorizing Sequences of Characters



Building the Network

from keras import layers
model = keras.models.Sequential()
model.add(layers.LSTM(128, input_shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)



Training & Sampling the Language Model

1. Drawing from the model a probability distribution over the 
next character given the text available

2. Reweighting the distribution to a certain "temperature"

3. Sampling the next character at random according to the 
reweighted distribution

4. Adding the new character at the end of the available text



Sampling Next Characters

def sample(preds, temperature=1.0):
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)



Text-generation Loop



Text-generation Loop (Cont’d)



Results of Epoch 60
Epoch 60/60
199936/200285 [============================>.] - ETA: 0s - loss: 1.2384
----- Generating text after Epoch: 59
----- diversity: 0.2
----- Generating with seed: "ange an opinion about any one, we charge"
ange an opinion about any one, we charger and the sense of the factity of the sense of the sense of the 
continuation of the sense of the sense of the heart and superstitions, and in the sense of the sense of the 
most spirit of the sense of the sense of the sense of the most portentous and as the sense of the sense of the 
sense of the sense of the heart and self-distrust of the sense of the sense of the sense of the sense of the 
sense of
----- diversity: 0.5
----- Generating with seed: "ange an opinion about any one, we charge"
ange an opinion about any one, we charges and contempleting and self-delight and in the sensive reports in 
the portent and morality of the sense of a fainh purpose of the effective century and that struckon and be 
conceptions and disposition of them as the sense of the fact that is the sense. the most foreign and the best 
and
who has almost science in the people more secret to the survivaling some man the belief in the other hand



Deep Dream



Implementing DeepDream in Keras



Configuring DeepDream



Defining the Loss



Gradient-ascent Process



DeepDream Process: Scaling and Detail Reinjection



Running Gradient Ascent over Different Successive 
Scales









Neural Style Transfer

• Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural 
Algorithm of Artistic Style,” arXiv (2015), https://arxiv.org/abs/1508.06576 .

https://arxiv.org/abs/1508.06576






Content Loss + Style Loss

• Using pre-trained model (VGG)

• Content Loss

• The style representations simply compute the correlations between 
different convolution layers, correlation is calculated by Gram matrix



https://d2l.ai/chapter_computer-vision/neural-style.html

https://d2l.ai/chapter_computer-vision/neural-style.html


Example

• https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.3-neural-style-transfer.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.3-neural-style-transfer.ipynb


Generating Images with Variational Auto-encoder





The Smile Vector



Auto-encoder

• Learn compressed representation of input x



Variational Auto-encoder

• Assume images are generated by a statistical process

• Randomness of this process is considered during encoding and decoding
https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.4-generating-images-with-vaes.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.4-generating-images-with-vaes.ipynb


Pseudo Code of Encode and Decoder

# Encode the input into a mean and variance parameter
z_mean, z_log_variance = encoder(input_img)

# Draw a latent point using a small random epsilon
z = z_mean + exp(z_log_variance) * epsilon

# Then decode z back to an image
reconstructed_img = decoder(z)

# Instantiate a model
model = Model(input_img, reconstructed_img)

# Then train the model using 2 losses:
# a reconstruction loss and a regularization loss



import keras
from keras import layers
from keras import backend as K
from keras.models import Model
import numpy as np

img_shape = (28, 28, 1)
batch_size = 16
latent_dim = 2  # Dimensionality of the latent space: a plane

input_img = keras.Input(shape=img_shape)

x = layers.Conv2D(32, 3, padding='same', activation='relu')(input_img)
x = layers.Conv2D(64, 3, padding='same', activation='relu', strides=(2, 2))(x)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(x)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(x)
shape_before_flattening = K.int_shape(x)

x = layers.Flatten()(x)
x = layers.Dense(32, activation='relu')(x)

z_mean = layers.Dense(latent_dim)(x)
z_log_var = layers.Dense(latent_dim)(x)

Encoder



Sampling

• In Keras, everything needs to be a layer, so code that isn't part of a built-
in layer should be wrapped in a Lambda (or else, in a custom layer).

def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),

mean=0., stddev=1.)
return z_mean + K.exp(z_log_var) * epsilon

z = layers.Lambda(sampling)([z_mean, z_log_var])



Decoder

# This is the input where we will feed `z`.
decoder_input = layers.Input(K.int_shape(z)[1:])

# Upsample to the correct number of units
x = layers.Dense(np.prod(shape_before_flattening[1:]), activation='relu')(decoder_input)

# Reshape into an image of the same shape as before our last `Flatten` layer
x = layers.Reshape(shape_before_flattening[1:])(x)

# We then apply then reverse operation to the initial stack of convolution layers: 
# a `Conv2DTranspose` layers with corresponding parameters.
x = layers.Conv2DTranspose(32, 3, padding='same', activation='relu', strides=(2, 2))(x)
x = layers.Conv2D(1, 3, padding='same', activation='sigmoid')(x)

# This is our decoder model.
decoder = Model(decoder_input, x)

# We then apply it to `z` to recover the decoded `z`.
z_decoded = decoder(z)



class CustomVariationalLayer(keras.layers.Layer):

def vae_loss(self, x, z_decoded):
x = K.flatten(x)
z_decoded = K.flatten(z_decoded)
xent_loss = keras.metrics.binary_crossentropy(x, z_decoded)
kl_loss = -5e-4 * K.mean(

1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)

def call(self, inputs):
x = inputs[0]
z_decoded = inputs[1]
loss = self.vae_loss(x, z_decoded)
self.add_loss(loss, inputs=inputs)
# We don't use this output.
return x

# We call our custom layer on the input and the decoded output,
# to obtain the final model output.
y = CustomVariationalLayer()([input_img, z_decoded])



Training VAE

• We don’t pass target data during training (only pass x_train to the model in fit)

vae = Model(input_img, y)
vae.compile(optimizer='rmsprop', loss=None)
vae.summary()

# Train the VAE on MNIST digits
(x_train, _), (x_test, y_test) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape + (1,))

vae.fit(x=x_train, y=None, shuffle=True, epochs=10, batch_size=batch_size,
validation_data=(x_test, None))



Use Decoder to Turn Latent Vectors into Images 
import matplotlib.pyplot as plt
from scipy.stats import norm

# Display a 2D manifold of the digits
n = 15  # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# Linearly spaced coordinates on the unit square transformed via the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))

for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):

z_sample = np.array([[xi, yi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, 2)
x_decoded = decoder.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size, j * digit_size: (j + 1) * digit_size] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()





Generative Adversarial Networks (GAN)

• https://www.youtube.com/watch?v=9JpdAg6uMXs

• https://arxiv.org/abs/1701.00160

https://www.youtube.com/watch?v=9JpdAg6uMXs
https://arxiv.org/abs/1701.00160


Generative Adversarial Networks (GAN)

• Ian Goodfellow

48



Bag of Tricks for Training GANs
• Use tanh as the last activation in the generator, instead of sigmoid

• Sample points from the latent space using a normal distribution

• Stochasticity is good to induce robustness. Introducing randomness during 
training helps prevent GAN to get stuck. 
− Use dropout in the discriminator
− Add some random noise to the labels for the discriminator.

• Sparse gradients can hinder GAN training. There are two things that can 
induce gradient sparsity: 1) max pooling operations, 2) ReLU activations. 
− Use strided convolutions for downsampling
− Use LeakyReLU, which allows small negative activation values.

• In generated images, it is common to see "checkerboard artifacts" caused 
by unequal coverage of the pixel space in the generator. 
− Use a kernel size that is divisible by the stride size



Train a GAN of Frog

• Use frog images from CIFAR10
− 50,000 32x32 RGB images belong to 10 classes (5,000 images per class).

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.5-introduction-to-gans.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.5-introduction-to-gans.ipynb


latent_dim = 32; height = 32; width = 32; channels = 3

generator_input = keras.Input(shape=(latent_dim,))

# First, transform the input into a 16x16 128-channels feature map
x = layers.Dense(128 * 16 * 16)(generator_input)
x = layers.LeakyReLU()(x)
x = layers.Reshape((16, 16, 128))(x)

# Then, add a convolution layer
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

# Upsample to 32x32
x = layers.Conv2DTranspose(256, 4, strides=2, padding='same')(x)
x = layers.LeakyReLU()(x)

# Few more conv layers
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

# Produce a 32x32 1-channel feature map
x = layers.Conv2D(channels, 7, activation='tanh', padding='same')(x)
generator = keras.models.Model(generator_input, x)
generator.summary()

Generator



discriminator_input = layers.Input(shape=(height, width, channels))
x = layers.Conv2D(128, 3)(discriminator_input)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Flatten()(x)

# One dropout layer - important trick!
x = layers.Dropout(0.4)(x)

# Classification layer
x = layers.Dense(1, activation='sigmoid')(x)

discriminator = keras.models.Model(discriminator_input, x)
discriminator.summary()

# To stabilize training, we use learning rate decay
# and gradient clipping (by value) in the optimizer.
discriminator_optimizer = keras.optimizers.RMSprop(lr=0.0008, clipvalue=1.0, decay=1e-8)
discriminator.compile(optimizer=discriminator_optimizer, loss='binary_crossentropy')

Discriminator



Freeze Discriminator When Training Generator

• We’ll train discriminator and generator alternately

# Set discriminator weights to non-trainable
# (will only apply to the `gan` model)
discriminator.trainable = False

gan_input = keras.Input(shape=(latent_dim,))
gan_output = discriminator(generator(gan_input))
gan = keras.models.Model(gan_input, gan_output)

gan_optimizer = keras.optimizers.RMSprop(lr=0.0004, clipvalue=1.0, decay=1e-8)
gan.compile(optimizer=gan_optimizer, loss='binary_crossentropy')



Training DCGAN

• for each epoch:
−Draw random points in the latent space (random noise).

−Generate images with `generator` using this random noise.

−Mix the generated images with real ones.

−Train `discriminator` using these mixed images, with corresponding 
targets, either "real" (for the real images) or "fake" (for the generated 
images).

−Draw new random points in the latent space.

−Trains the generator to fool the discriminator => train `gan` using these 
random vectors, with targets that all say "these are real images". 



for step in range(iterations):
# Sample random points in the latent space
random_latent_vectors = np.random.normal(size=(batch_size, latent_dim))
# Decode them to fake images
generated_images = generator.predict(random_latent_vectors)
# Combine them with real images
stop = start + batch_size
real_images = x_train[start: stop]
combined_images = np.concatenate([generated_images, real_images])
# Assemble labels discriminating real from fake images
labels = np.concatenate([np.ones((batch_size, 1)), np.zeros((batch_size, 1))])
# Add random noise to the labels - important trick!
labels += 0.05 * np.random.random(labels.shape)
# Train the discriminator
d_loss = discriminator.train_on_batch(combined_images, labels)
# sample random points in the latent space
random_latent_vectors = np.random.normal(size=(batch_size, latent_dim))
# Assemble labels that say "all real images"
misleading_targets = np.zeros((batch_size, 1))
# Train the generator (via the gan model,
# where the discriminator weights are frozen)
a_loss = gan.train_on_batch(random_latent_vectors, misleading_targets)



Generated Frog Images



Other Advanced GAN Models

• TensorFlow Tutorial / Generative

1. Pixel-2-Pixel

2. CycleGAN

3. Adversarial FGSM

https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm


Pix2Pix
• Phillip Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, 2018

https://arxiv.org/abs/1611.07004


Training Conditional GAN

• Both the generator and discriminator observe the input edge map

• Use U-Net and PatchGAN discriminator





Applications based on Pix-2-Pix



Design of Generator and Discriminator

https://www.tensorflow.org/tutorials/generative/pix2pix

Generator Discriminator

https://www.tensorflow.org/tutorials/generative/pix2pix


CycleGAN
• Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2018

• Learn to automatically “translate” an image from one into the other and vice versa

https://arxiv.org/abs/1703.10593


Model of CycloneGAN

• Two mapping functions G : X → Y and F : Y → X

• Two cycle consistency losses:
− Forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ x

− Backward cycle-consistency loss: y → F(y) → G(F(y)) ≈ y





Adversarial Attack

• Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015

• Fast Gradient Signed Method (FGSM)

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

https://arxiv.org/abs/1412.6572
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm


References

• Francois Chollet, “Deep Learning with Python,” Chapter 8

• https://www.tensorflow.org/tutorials/generative/

https://www.tensorflow.org/tutorials/generative/

