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What is Reinforcement Learning?

Reinforce

Delayed ment

Reward .
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What is reinforcement learning? In its simplest form, reinforcement learning is “trial
and error” plus “delayed reward”. “trial and error” means “learn from your own
mistakes”, while “delayed reward” means our goal of learning is to maximize the
cumulative reward in the end.
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Reinforcement Learning in Humans
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* Human can learn from “very few examples” + “trial-and-error’
* How? We don’t know yet...

* Possible answers
— Hardware: 230 million years of bipedal movement data
— Imitation learning: observing other human E
— Algorithms: Better than backpropagation & SGD §

Lex Fridman, MIT Deep Learning, https://deeplearning.mit.edu/

In fact, there are a lot of reinforcement learning examples of animals. For example,
let’s think about a baby that tries to learn how to walk by themselves. They’ll keep
falling and standing up, falling and standing up many many times until they learn how
to walk. However there's a big difference between today’s RL algorithms and the
animals’ learning. That is, animal and human can learn from “very few examples” .
This is an unsolved problem and we still don’t know why. The possible answers may
be that animals have some pre-programmed algorithms in their brain after the 230
million evolution, or human can do imitation learning by observing other human, or
that we need better algorithms than current backpropagation and gradient descent.
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Define Reinforcement Learning

Environment
(Model)

Reward r;
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Agent

Let’s define deep reinforcement learning mathematically. First, there is a software
agent and an environment. The environment provides observations and rewards to
the agent. Observation is also called state St. The goal of the agent is learning how to
perform different actions a; under various states S, to achieve maximum cumulative
future reward R;. In other words, the software agents learn an optimized action
model in an environment by doing trial-and-errors million times. The model is called

policy m(a;|S;).
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Environments and Actions

* Fully observable (Chess) vs Partially observable (StarCraft)

* Single Agent (Atari) vs Multi-agent (DeepTraffic) 0
* Deterministic (Chess) vs Stochastic (DeepTraffic) 50
* Discrete (Chess) vs Continuous (Cart Pole) y ; 0
u'f-’
L
o
Cart Pole
DeepTraffic

Lex Fridman, MIT Deep Learning, https://deeplearning.mit.edu/

There are many kinds of environments and actions, as listed in this slide. Chess is fully
observable, which means we can observe all the actions of our opponents. On the
contrary, the video game StarCraft is only partially observable. The other
characteristics is if the learning is performed by single agent, or cooperative learning
of multi-agents, such as the simulation environment DeepTraffic developed by MIT.
Another characteristics is whether the environment is deterministic, i.e., the
environment rules don’t change during learning, or stochastics. Finally, the
environment can be either discrete or continuous.
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Markov Decision Process (MDP)

https://en.wikipedia.org/wiki/Markov_decision_process

The previous model can be formulated as a Markov decision process (MDP), which is
a discrete time stochastic control process. MDP has been widely used in many
disciplines, including robotics, automatic control, economics and manufacturing.
MDPs were proposed as early as the 1950s and provides a mathematical framework
for modeling decision making in situations where outcomes are partly random and
partly under the control of a decision maker. MDPs are useful for

studying optimization problems solved via dynamic programming and reinforcement
learning.

At each time step, the process is in some state S, and the decision maker may choose
any action a that is available in state s. The process responds at the next time step by
randomly moving into a new state s' and giving the decision maker a corresponding
reward Ra(s,s’). For more details, please refer to Wikipedia
(https://en.wikipedia.org/wiki/Markov decision process).

SCRTHIIERI AT DRI S B T KA SRAEEE (MDP) - i & — (Bl s F P A 2
HUERE - MDPESEZIEANF LR » Biatas ARlT - BEhES] » KREEA
T HBE o MDPRFZIE1950F 2 Y » Tttt 7 —fEEEREA » [N ELS
TR BER B B0y 2 A RS A S T B SR H B TR - MDPH] M
FeimiEdynamic programmingf158{ bE2 H B L RTE




EEHERFACEE T > RAZEDE N HAERAES » SR mT USSR RE o ] A A (5 {a]
#fFa o FIMIEAE N —HR0ENE » B AWIRRES - W48 TSR ETHIERTHE
EiRa (s,s') - #F4H(E R AR Wikipedia ©



Example: Student MDP

Facebook
R=-1

Facebook

Quit
R=0
Study
R=+10

Study

http://wwwoO.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf by David Silver

Here is a student Markov Decision Process (MDP) from David Silver’s RL course. A
student first go to a class “Class 1”. After the first class, a student may choose to do
Facebook or continue to join the next class “Class 2”. Doing Facebook will hurt your
learning, so you get the reward — 1. However, continuing go to class will hurt your
feeling, so you get reward -2. if you can insist to go to class 3 and study, then you will
pass and get reward +10, and go to sleep finally. Sleep is the terminal state of the
MDP. On the other hand, you may choose to go to the pub for relax, and then go back
to class 1, class 2 or class 3.
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Example: Tic-Tac-Toe

* One player plays Xs and the other Os until one player wins by placing
three marks in a row horizontally, vertically, or diagonally.

X100
O X |X
X

Sutton, Richard S.; Barto, Andrew G.. Reinforcement Learning (2" edition) (p. 8).

Let’s look at another example. Consider the familiar child’s game of tic-tac-toe. Two
players take turns playing on a three-by-three board. One player plays Xs and the
other Os until one player wins by placing three marks in a row, horizontally, vertically,
or diagonally, as the X player has in the game shown to the right. If the board fills up
with neither player getting three in a row, then the game is a draw.

Because a skilled player can never lose, let us assume that we are playing against an
imperfect player, one whose play is sometimes incorrect and allows us to win.
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starting position

Playing Tic-Tac-Toe

opponent's move

our move

X O O opponent's move

our move

opponent's move

our move
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Sutton, Richard S.; Barto, Andrew G.. Reinforcement Learning (2" edition) (p. 9).

When playing a game, our move will affect opponents’ move, and opponents’ move
will affect our move, vice versa. This process can be expanded as a tree structure. If
the number of states is small, we can exhaustively calculate all winning possibilities.
First, we would set up a table of numbers, one for each possible state of the game.
Each number will be the latest estimate of the probability of our winning from that
state. We treat this estimate as the state’s value, and the whole table is the learned
value function.

We then play many games against the opponent. We move greedily, selecting the
move that leads to the state with greatest value, that is, with the highest estimated
probability of winning. Occasionally, however, we select randomly from among the
other moves instead. These are called exploratory moves because they cause us to
experience states that we might otherwise never see, and let us learn other playing
strategies.
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Updating the Value Function

* S;: State at time ¢ }
* V( ):Value (expected return) e {
* a: Step-size parameter (learning rate) E
V(S:) « V(S + alV(Ses1) = V(S
\ )

!

Temporal Difference

While playing tic-tac-toe, we keep updating the values of the states V(S;). We
attempt to make them more accurate estimates of the probabilities of winning. To do
this, we “back up” the value of the state after each greedy move to the state before
the move, as suggested by the red arrows. More precisely, the current value of the
earlier state V(S;) is updated to be closer to the value of the later state V(S;41).
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Sutton, Richard S.; Barto, Andrew G.. Reinforcement Learning (Adaptive Computation and Machine Learning series) (p. 189)

All kinds of reinforcement learning algorithms can be viewed as searching along
width or depth of the MDP expanded tree structure. The record of each depth
searching is called a trajectory.

All RL methods have three key ideas in common: first, they all seek to estimate value
functions; second, they all operate by backing up values along actual or possible state
trajectories; and third, they all follow the general strategy of generalized policy
iteration (GPl), meaning that they maintain an approximate value function and an
approximate policy, and they continually try to improve each on the basis of the
other. These three ideas are central to the subjects covered in Sutton’s book.

As shown in the figure, these dimensions have to do with the kind of update used to
improve the value function. The horizontal dimension is whether they are sample
updates (based on a sample trajectory) or expected updates (based on a distribution
of possible trajectories). Expected updates require a distribution model, whereas
sample updates need only a sample model, or can be done from actual experience
with no model at all (another dimension of variation).

The vertical dimension corresponds to the depth of updates, that is, to the degree of
bootstrapping. At three of the four corners of the space are the three primary
methods for estimating values: dynamic programming, TD, and Monte Carlo. Dynamic
programming methods are shown in the extreme upper-right corner of the space
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because they involve one-step expected updates of all states. The lower-right corner

is the extreme case of expected updates so deep that they run all the way to terminal

states.
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Exploration vs. Exploitation

* e-greedy policy
— With € performs random action, (1- €) performs greedy action
— Slowly move to greedy policy € ->0

Reinforcement learning faces the exploration and exploitation dilemma. Exploration
means the agent try to search for new ways by taking random actions. Exploitation
means the agent follows current policy and selects actions greedily, that is, always
selects the current best action. Exploration tries to find better strategies while
exploitation focuses on improving current policy. The most common method is &-
greedy policy, which performs random action € of the time and performs greedy
action (1- €) of the time.
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On-policy vs. Off-policy

* On-policy
— Uses one policy, exploit (1- €) and explore € of the time
— Simpler and fast to converge to local minima

* Off-policy
— Uses two policies: target policy and behavior policy
— Target policy is the optimal policy
— Behavior policy is more exploratory
— Harder to train but more powerful

Sutton, Richard S.; Barto, Andrew G.. Reinforcement Learning (Adaptive Computation and Machine Learning series) (p. 103).

All learning control methods face a dilemma: They seek to learn action values
conditional on subsequent optimal behavior, but they need to behave non-optimally
in order to explore all actions (and then find the optimal actions). How can they learn
about the optimal policy while behaving according to an exploratory policy? The on-
policy approach such as e-greedy is actually a compromise— it learns action values
not for the optimal policy, but for a near-optimal policy that still explores. A more
straightforward approach is to use two policies, one that is learned about and that
becomes the optimal policy, and one that is more exploratory and is used to generate
behavior. The policy being learned about is called the target policy, and the policy
used to generate behavior is called the behavior policy. In this case we say that
learning is from data “off” the target policy, and the overall process is termed off-
policy learning.
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Sutton, Richard S.; Barto, Andrew G.. Reinforcement Learning (Adaptive Computation
and Machine Learning series) (p. 103). The MIT Press.
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Maze Example

Start
m Rewards: -1 per time-step

m Actions: N, E, S, W

m States: Agent's location

Goal

http://wwwoO.cs.ucl.ac.uk/staff/d.silver/web/Teaching files/intro RL.pdf by David Silver

Let’s look at a maze learning example. This example is from the first class of David
Silver’s Reinforcement Learning. The objective of the agent is to find the shortest
path between “Start” and “Goal”. We give the agent -1 reward per time-step to
encourage it to arrive at the Goal in shortest time. There are four actions: moving
north (N), east (E), south (S) or west (W). The states are the agent’s location.
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Maze Example: Policy m(a;|S;)

Here is the visualization of Policy m(a;|S;) . In this example, the red arrows are the
actions the agent choose to do under different state. It is a deterministic policy, which
means we always select one specific action at specific state.
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Maze Example: Value Function

BB E
DonD

Let’s look at the value function of the map. Starting from the location nearest to
“Goal”, we have -1 reward, because it will take only one step to reach the goal. As we
can see, by moving toward the location with higher value (reward), we can easily find
the shortest path from “Start” to “Goal”.

s ME B 1B E (E ek E (value function) » fERHEAT "HEL HYAIERIG » 3K
FIRPERS-1558) > INBERFE—Duia] DUESIERE - kMR > mEEEE
(Reward) 5 S YA ER ) » T o] IEERAIREIE “Start” I "Goal” HYAAZESTE -

16



Maze Example: Model

* Agent may have an internal
model of the environment

* The model may be imperfect

* Numbers (-1) represent
immediate reward R from each
state s (same for all actions)

In addition, the agent can build an internal model of the environment from its own
exploration experiences. For example, the agent may have found the way to the
“Goal”, and create an internal model based on its trajectories, as shown at the left.
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3 Types of Reinforcement Learning

Model-based
Value- Policy-
based based

So now we know that reinforcement learning algorithms can be classified into three
types: model-based, value-based and policy-based.

REF A A E R B AR SRBE ] DL 57 s =7F8: model-based, value-basedfIpolicy-
based.
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3 Types of Reinforcement Learning

Model-based
Value- Actor Policy-
based . based

Policy
DON Gradient

Most RL algorithms are model-free and belong to value-based or policy-based
methods, such as Deep Q Networks (DQN) and Policy Gradient. Some algorithms are
mix of two types, such as Actor-critic.
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Better

Sample Efficient Less

Sample Efficient

X Off-policy it On-policy Evolutionary/
(1“38?;?‘: 2 2?:::5) Q-learning Actor-critic Policy Gradient gradient-free
(1 M time steps) (10 M time steps) (100 M time steps)

Model-based Value-based Policy-based

* Learn the model of * Learn the state or * Learn the stochastic
the world, then plan state-action value policy function that

using the model « Act by choosing best maps state to action

« Update model often action in state * Act by sampling policy

* Re-plan often * Explorationisa * Exploration is baked in
necessary add-on

If we have a good model of the environment, then we can use the model to plan the
actions, and the learning is more efficient. However, it’s difficult to model a complex
environment in practice. The value-based methods learn the possible reward of each
state or action, and use those values to select best actions. On the other hand, the
policy-based methods directly optimize policy functions and are almost always on-
policy, which requires more samples for learning.
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Taxonomy of RL Methods

RL Algorithms

i
1 P’

Model-Free RL Model-Based RL

b}

Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient DQN ‘ World Models Lr AlphaZero
) g DDPG ‘ ) g : g
A2C / A3C p \ c51 ‘ 12A
’ TD3 ‘ e — e —
PPO ——— QR-DQN ‘ MBMF
! SAC ‘ . 5 I— g
TRPO ' HER ‘ MBVE

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

This is the reinforcement learning taxonomy from OpenAl. This tree diagram includes
most state-of-the-arts RL algorithms. OpenAl classify the model-free methods into
two categories: policy optimization and Q-learning. Q-learning family aims to learn an
action-value function Q(s,a). The most famous Q-learning based algorithm is Deep Q
Networks (DQN), the breakthrough algorithm proposed by DeepMind, which
combines Q-learning with neural networks.

Bk HOpenAll s L 13 4EE - SBHEEIEE T KB IIRLES
OpenAlRHEIZIF IR (Model-free) 777457 By WidH © Sl {E{LAIQ-learning - Q-
learningfHAEELE EEEETEIEEREQ (s> a) - EBIENQEEHITE
7£&Deep Q Networks (DQN) B EDeepMindfgHHYZEM LR - ERFQEHE
B A sE A HAE &

21



Q-Learning: Value Iteration

Qt11(st. at) = Qe(st, at)+a (Rz+1 + 7 max Qe(se41,a) — Qelse, at))

T |

New State

Al A2 A3 A4

initialize Q[num states,num actions] arbitrarily
S1 +1 +2 -1 0 observe initial state s
repeat
select and carry out an action a
observe reward r and new state s'
Q[s,a)l = Q[s,a] + a(r + y max, Q[s',a'] - Q[s,al)
S3 -1 +1 0 -2 s =35"

until terminated

S2 +2 0 +1 -2

sS4 -2 0 +1 +1

Let's take a look at the fundamental concepts of Q-learning. Q-learning learns to
estimate the expected future reward for different actions under various states. We
can formulate it as Q(s¢, a;), and update Q function using Bellman equation. If the
number of states and actions are few, we can build an action-state table, which is also
called Q-table, to calculate the corresponding rewards of all action-state pairs, as
shown at the lower-left corner. However, the number of states are very large in real
world, it is inefficient and nearly impossible to build a complete action-state table.
DeepMind solved this problem by using neural network to approximate the Q-table.
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Policy Gradient (PG)

* PG (on-policy): Directly optimize policy function

T—1
Vo (0) = E,[Y_ Vologm(as|s:)Gi]

t=0

raw pixels hidden layer

Good illustrative explanation:
http://karpathy.github.io/2016/05/31/rl/

“Deep Reinforcement Learning:
Pong from Pixels”

Policy Network

Policy gradient is an intuitive method that directly optimizes the policy function. This
is a on-policy method because we only have one policy function. Comparing to off-

policy methods such as DQN, policy gradient is easier to train and converge, but also
tend to stuck at local minima. Anderj Karparthy has made an interesting experiment

of training agent to play game Pong using policy gradient. You can refer to his Github.

UL A (Policy gradient) & BB LIRISTHREAV E B 704 - i5& —TEOn-
policyfy 7772 » KR AFR A —TESRIS = - BIDAQNZEOff-policy /5 7AMLL >
Policy gradient 58 S A SRFIUL & > (HHL = FME BEAE S S0 E/IME. » Anderj
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“#KarpathyHyJGithub
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Actor-Critic Methods

RL Algorithms

!
{ }
Model-Free RL Model-Based RL
1 b f 3
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <—— — DQN World Models I—» AlphaZero
E— DDPG -
A2C /A3C 94— | — (=3 12A
— TD3 a—
PPO S ——>  QR-DQN MBMF

— SAC 4—|—>

TRPO < HER L

MBVE
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Actor-Critic Methods

* Actor-Critic: combine policy gradient and Q-learning
— Actor: decides which action to take
— Critic: measure how good the action was and how to improve

VoJ(0) = En, [Volog (s, a) G REINFORCE
=E,, [Vologmg(s,a) Q" (s, a)] Q Actor-Critic
=Enr, [Vologmg(s,a) A”(s,a)] Advantage Actor-Critic
= Enr, [Volog (s, a) J] TD Actor-Critic

Image taken from CMU CS10703 lecture slides

https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f

The Actor-Critic methods combines the policy gradient and Q-learning. The Actor
learns to optimize the policy and decides which action to take. The Critic adopts a
value-based method and evaluates the performance of the Actor. Depends on types
of the value function, the Actor-Critic methods can be classified into Q Actor-Critic,
Advantage Actor-Critic, and Temporal-Difference (TD) Actor-Critic.

Actor-Critic /772454 1 policy gradientf1Q-Learning © ActorZ2 & {8 LB R I A EFF
HUWARAE 78) o CriticBR RN EEN T /AL RESActorfyZRIA -« MR E R EHIARE
Actor-Critic /7,2 1] LL47 FQ Actor-Critic - Advantage Actor-Critic[ITemporal-
difference ( TD ) Actor-Critic °
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Asynchronous Advantage Actor-critic (A3C)

Training in parallel Training in parallel
Agent 1
Agent 2
Global Global
Network Network Coordinator
Parameters Parameters Agent 3
Agentn

A3C (Async) A2C (Sync)

https://theaisummer.com/Actor critics/

DeepMind proposed the Asynchronous Advantage Actor-critic (A3C) method in 2016.
Multiple agents learn parallelly in their own copy of the environment, and then
update the global network periodically. The updates are not happening
simultaneously and that’s where the asynchronous comes from. After each update,
the agents resets their parameters to those of the global network and continue their
independent exploration and training for n steps until they update themselves again.
We see that the information flows not only from the agents to the global network but
also between agents as each agent resets his weights by the global network, which
has the information of all the other agents.

OpenAl suggested that A3C can be more efficient by adding a coordinator and
updates the global network parameters synchronous. They proposed Synchronous
Advantage Actor-Critic (A2C) and show that A2C outperforms A3C on many
reinforcement learning tasks.

DeepMindfF20164Ef2H T~ “JE[EI2 Advantage Actor-critic (A3C) 7 7574 < 21
R H CHREEIA R TEY - MR EHE T 2E4E4% - SN e EREE
1Y > MiBIEEFTEIIEE" - SR EHR - (B HSHEE Hhe FHE4%
8 WBEE T AT ERR ISR - BRI RERE OIS - K
MEE - EEMEEARIR A2k - mHEEEEZ ERE - REEET
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Policy Optimization

* Avoid taking bad actions that collapse the training performance

Line Search: Trust Region:
First pick direction, then step size First pick step size, then direction

TRPO updates policies by picking step size that satisfy a special constraint on how
close the new and old policies are. The space is called Trust Region. The constraint is
expressed in terms of KL-Divergence, a measure of distance between probability
distributions. This is different from normal policy gradient, which picks direction first,
then step size. In practice, a single bad step can collapse the policy performance. This
makes it dangerous to use large step sizes with traditional policy gradients. TRPO
nicely avoids this kind of collapse, and tends to improve performance quickly.
(https://spinningup.openai.com/en/latest/algorithms/trpo.html#tbackground)

TRPO 7575543 5 T step size 2K B HroRlg - 15 thstep sizeli & ¥ 8 SRS B FAEE
ZERTRATR o MR SEEE” - 4% FKL-DivergenceF R » KL-
Divergence & M 2K & MMM 73 =~ IRV EERE - B —R iSRS BREI 2 BIERY > 1&
HIEEEE TR > N P Estep size - BIE L —{E NG EVABE TR S (SRS M
BERRVE o 1B{P1STEHAR RIS (i H Kstep sizedEE &k - TRPOIR AT 5
TIiEEARE o 0T DUPEREE = RS -
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™ Google DeepMind

DeepMind was founded by Demis Hassabis, Shane Legg and Mustafa Suleyman in
2010. The goal of the founders is to create a general-purpose Al that can be useful
and effective for learning almost anything. Because the founders has background in
game industry, they started training Al agents how to play old Atari games that were
popularin 1970s and 80s. On 26 January 2014, Google announced the company had
acquired DeepMind for $500 million. The company made headlines worldwide in
2016 after its AlphaGo program beat a human world champion Go player Lee Sedol.

DeepMindFHDemis Hassabis > Shane LeggflIMustafa Suleymani220104E£1 17 - Bll44
ANHHEEE RS AYAL » ] DLEEEEEY) - HINEIB N BB I 7%
B HE BRI AR A0 BT 19708 AI80EA R/ THY EE Atariziz g, -
20145!51)% 26H > GoogleEAf#Z .~ = LLASEFETLHIEIS UL T DeepMind = fEH:
AlphaGoz 1 #IEH T7 N\ S B L5 F-Lee Sedol 7 1% > E%&TEZOleEBU%
EIKBAPRHTRE] -
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Learn to Play Atari Games

* Mnih et al., “Human Level Control through Deep Reinforcement
Learning,” Nature, 2015

aooooon 958910
SECTIR O1 bbbk

DeepMind published their first breakthrough algorithm, DQN, on Nature in 2015.
Here are some examples of Al playing Atari games in OpenAl Gym. OpenAl Gym is a
open-source RL simulation environments released by OpenAl.

DeepMindjR20155E4F ( HAA) Fst Lask T fInysE—(Eze B ADQN - 2
B—LEAI{FOpenAl Gym S HrAtari iz ELATAIRYEIH] - OpenAl GymiE HHOpenAlZEAf
HYFERRUBL SR ST -
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DRL in Atari TS

state # J o YK action
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When training Al playing Atari games via reinforcement learning, the environment is

the Atari game console, the reward is the score of the game, the state is the
screenshots, and the actions are the directions and buttons of joy sticks.

iR LEAE | SRAIDTAtari BT - FRIEEAtari gt - SRR MBI o ik
%E

TRl > B E AR T (R AT -
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Layer Input Filter size | Stride Num filters | Activation | Output
convil 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU 9x9x64
conv3 9x9x64 3x3 1 64 RelLU 7x7x64

fcd 7x7x64 512 RelLU 512

fc5 512 18 Linear 18

DeepMind adopted a small neural network that has three convolution layers and two
fully connected layers. Surprisingly, the simple network can successfully learn many
different Atari games and achieve human-level performance.

DeepMind i 17—/ NEIHIAEAEAE - 24848 B A = (E-G 0@ AR {5 P2
o S NEFHE - B (AR EAYAEEE o] DU ERE T2 A [F R Atari i Sl 2 5]
NEUKPHIMERE -




DQN Tricks

* Experience Replay

» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process

* Fixed Target Network

* Error calculation includes the target function depends on network
parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.

Q(s1,0) — Q(s0,0) +a [. +ymax Q(ovs1,9)| - Qorsa)

Replay x x
Target x x
Breakout 316.8 240.7 10.2 32
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 2758
Space Invaders 1088.9 826.3 373.2 302.0

Both reinforcement learning and neural networks are hard to train. DeepMind
introduces two tricks to make training DQN stable. The first trick is experience replay,
which stores the previous actions, states and rewards, and provide them again for
later training. This trick allows DQN to “review” important actions. The second trick is
using off-policy strategy, which separates learning into the behavior policy and target
policy, and updates the target network every 1000 steps.

s CELE ADE A AE AL R EES ISR - DeepMind5 [ AT W {Efse X 21 (EDAN F] LUFS
TENGR o BB (BRI 2B - B LARTRVEN(E - ARRENISREhEE RS - A0
Tt EM LAt IR HTFISE - DONFTEUE A EETS "EE" EEERE - H
F5 2 f#E Foff-policy - {FFEZE 7 pREHFAEESER HERAERE - A4AF100025 Bf— X

H HEAEEs -
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AlphaGo

Google DeepMind

AlphaGo is the most famous success story of deep reinforcement learning. In 2016,
Alpha won the five-game Go match against the 18-time world champion Lee Sedol,
and lost only one game, which is the last game won by humans. After that AlphaGo
has swept the human opponents.

AlphaGosE ZE[E 58 BERE e B S » 20164F - fo] BVA(EEL18E tH S B
P-FELH (Lee Sedol) HYTUGEIHELE TERs - 1L H X 7 —HEE > EEA
MRmSHIRR 5 - Z1& > AlphaGofF#e I \JHES T
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AlphaGo Zero
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DeepMind continue pushing the limit after beating the human world champion. In
Oct. 2017, DeepMind introduced AlphaGo Zero, which learns Go without referring
any human play records.

Eventually, no one can understand the strategies behind the moves of AlphaGo Zero,
which are beyond human comprehension.

DeepMindfF B2 A N\ FE tH FLUR B 12 B EHRER R - 20174210 H » DeepMind#: H
T AlphaGo Zero » A[fEARSHE(T0] \ BEZE5t skt IE N N EEGo - 4% > 4 AAE
Hif#AlphaGo Zerof TENEF (R YRS - BLLSRIGE L 17 AR ST -
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The latest work from DeepMind is AlphaStar, which learns to play the famous real-
time strategy game StarCraft. Although StarCraft is easier to play than Go for most
people, it is a partially observable game and hard for reinforcement learning. In the
beginning of the game, the map is covered with “war fog”, and each player can only
see the neighborhood of his own troops. On the contrary, Go is a fully observable
game that all opponents’ moves can be viewed. Therefore, StarCraft is actually more
difficult than Go.

DeepMindH T {FEanEAlphaStar - EE2E | Br& LAY B R RIS IS, (25T
) o BEHRARSHAKES - (EEFEH) b (EH) F5550 0 HEZW
Ty A BERAY RSN - REEET TR LY o (RGN - HiE FAEEE EiF
% B R B E CERRIMTE o AN o BIEE K ee e g
HyiEEY - ATUEBRTAS TR o NIt > (ZMEFE) EIRX Libcos & -
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OpenAl Gym

* https://gym.openai.com/envs/
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@ Learning Dexterity

https:

outu.be/jwSbzNHGfIM
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Sutton: Reinforcement Learning

* Richard S. Sutton and Andrew G. Barto, “Reinforcement Learning: An
Introduction,” 2"d edition, Nov. 2018
B

Reinforcement
Learning

An Introduction
second edition

Richard $. Sutton and Andrew G. Barto

https://en.wikipedia.org/wiki/Richard S. Sutton

Richard S. Sutton is a Canadian computer scientist. Currently, he is a distinguished
research scientist at DeepMind and a professor of computing science at

the University of Alberta. Sutton is considered!t! one of the founding fathers of
modern computational reinforcement learning, having several significant
contributions to the field, including temporal difference learning and policy gradient
methods. (Wikipedia)
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https://www.youtube.com/watch?v=zR11FLZ-O9M
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