
Multi-armed Bandits

Prof. Kuan-Ting Lai

2020/3/12



k-armed Bandit Problem

• Playing k armed bandit machines and find a way to win most money!

• Note: assume you have unlimited money and never go bankrupt! 

https://towardsdatascience.com/reinforcement-learning-multi-arm-bandit-implementation-5399ef67b24b

https://towardsdatascience.com/reinforcement-learning-multi-arm-bandit-implementation-5399ef67b24b


10-armed Testbed
• Each bandit 

machine 
has its own 
reward 
distribution



Action-value Function 

• Let 𝑞∗ 𝑎 be the true (optimal) action-value function 

𝑞∗ 𝑎 ← 𝐸[𝑅𝑡|𝐴𝑡 = 𝑎]

• 𝑄𝑡 𝑎 : The estimated value (reward) of action a at time t



ε-greedy

• Greedy action
− Always select the action with max value

− 𝐴𝑡 ← argmax
𝑎

𝑄𝑡(𝑎)

• ε-greedy
− Select the greedy action (1- ε) of the time, select random actions ε of the time



Performance of ε-greedy

• Average rewards over 2000 runs with ε=0, 0.1, 0.01



Optimal Actions Selected by ε-greedy

• Optimal actions selected over 2000 runs with ε=0, 0.1, 0.01



Update 𝑄𝑡 𝑎

• let 𝑄𝑛 denote the estimate of its action value after it has been 
selected n − 1 times



Deriving 
Update Rule
• Require only memory of 

Qn and Rn



Tracking a Nonstationary Problem

• Using constant step-size 𝛼 ∈ (0,1]

• Constant step-size doesn’t converge



Exponential Recency-weighted Average

𝑄𝑛+1 = 1 − 𝛼 𝑛𝑄 +

𝑖=1

𝑛

𝛼 1 − 𝛼 𝑛−𝑖𝑅𝑖

1 − 𝛼 𝑛 +

𝑖=1

𝑛

𝛼 1 − 𝛼 𝑛−𝑖 = 1



Optimistic Initial Values

• We should not care about initial value too much in practice



Upper-Confidence-Bound Action Selection

• 𝑁𝑡 𝑎 : Number of times that action a has been selected prior to time t

• Not practical for large state spaces

𝐴 ← argmax
𝑎

𝑄𝑡 𝑎 + 𝑐
ln 𝑡

𝑁𝑡 𝑎



Gradient Bandit Algorithms

• Soft-max function

• 𝜋𝑡(𝑎) is the probability of taking action a at time t



Selecting Actions based on 𝜋𝑡(𝑎)



Gradient Ascent



Calculating Gradient

• Adding a baseline B



Convert Equation into Expectation

• Multiplied by 𝜋𝑡(𝑥)/𝜋𝑡(𝑥)

• Choose baseline 𝐵𝑡 = 𝑅𝑡



Calculating Gradient of Softmax



Final Result

• Gradient bandit algorithm = gradient of expected reward!



Reference

• Chapter 2, Richard S. Sutton and Andrew G. Barto, “Reinforcement 
Learning: An Introduction,” 2nd edition, Nov. 2018


