PROPERTY AND A CONTRACTOR

annes a street for

AT ADDRESS TORONG THE REPORT OF THE CONSTRUCT ANTIGUND OF THE DOLD

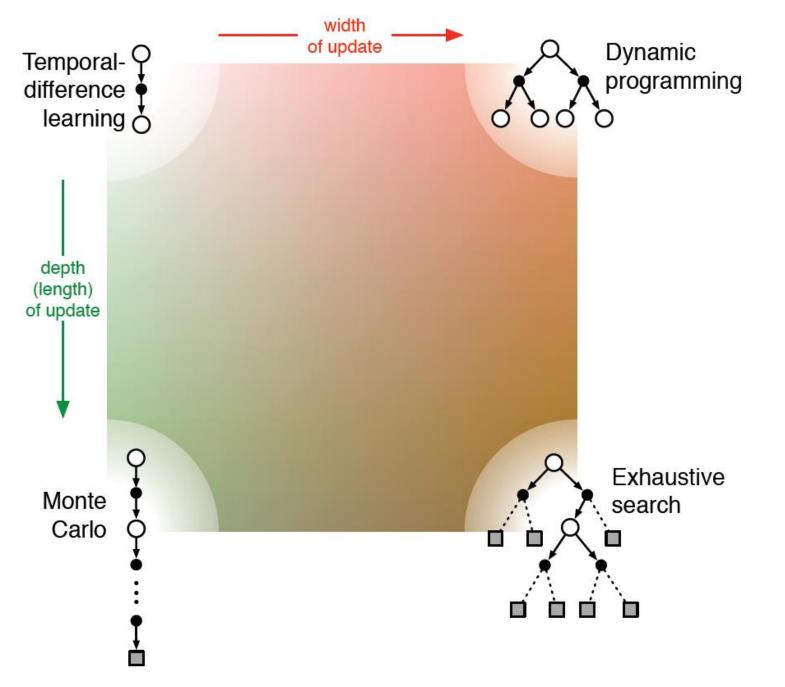
Temporal-Difference Learning

Prof. Kuan-Ting Lai 2020/5/4

100%

Temporal Difference (TD) Learning

- Learn from the experience of few time steps
- TD is model-free
- TD methods learn from a guess from a guess (bootstrap)
- TD combines the sampling of MC with the bootstrapping of DP
- Most novel idea in reinforcement learning



3

Monte-Carlo vs. Temporal-Difference

• MC waits until end of the episode and uses Return G as target

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

• TD only needs few time steps and uses observed reward R_{t+1}

 $V(s_t) \leftarrow V(s_t) + d[R_{t+1} + rV(s_{t+1}) - V(s_t)]$

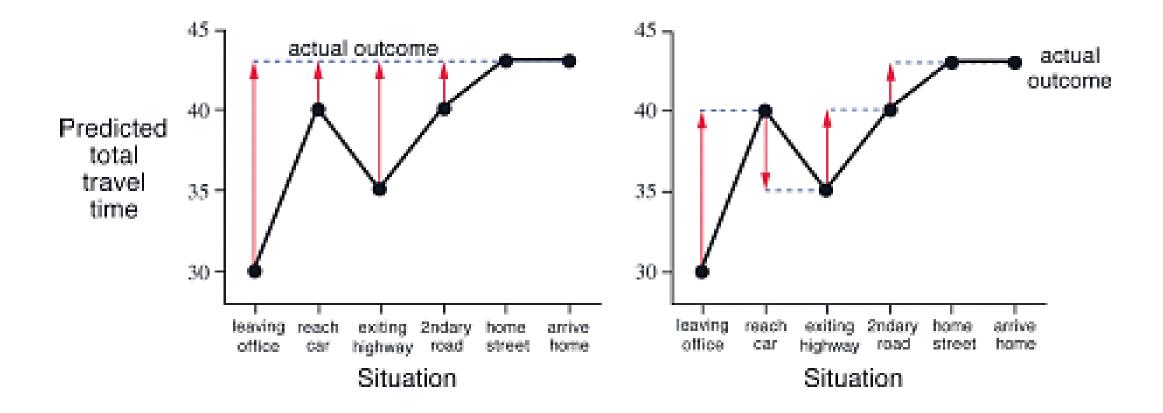
TD Error and MC Error $TD Error = \delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ M (Error = $G_t - V(S_t) = R_{t+1} + Y G_{t+1} - V(S_t) + Y V(S_{t+1}) - Y V(S_{t+1})$ $= \delta_{t} + \gamma (G_{t+1} - V(S_{t+1})) \qquad 0 \quad 0$ = $\delta_{t} + \gamma (G_{t+1} + \gamma^{2} (S_{t+2} + \cdots + \gamma^{T-t})) \qquad T-t \qquad 11 \quad 11$ = $\delta_{t} + \gamma (S_{t+1} + \gamma^{2} (S_{t+2} + \cdots + \gamma^{T-t})) \qquad (G_{T} - V(S_{t}))$ $= \sum_{k=t}^{T-1} \gamma^{k-t} \delta_k$

Example: Driving Home

• Estimate the time of arriving home

State	Rewards Elapsed Time (minutes)	Values Predicted Time to Go	Predicted Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Example: Driving Home (TD vs. MC)



Advantages of TD

• TD vs. Dynamic Programming

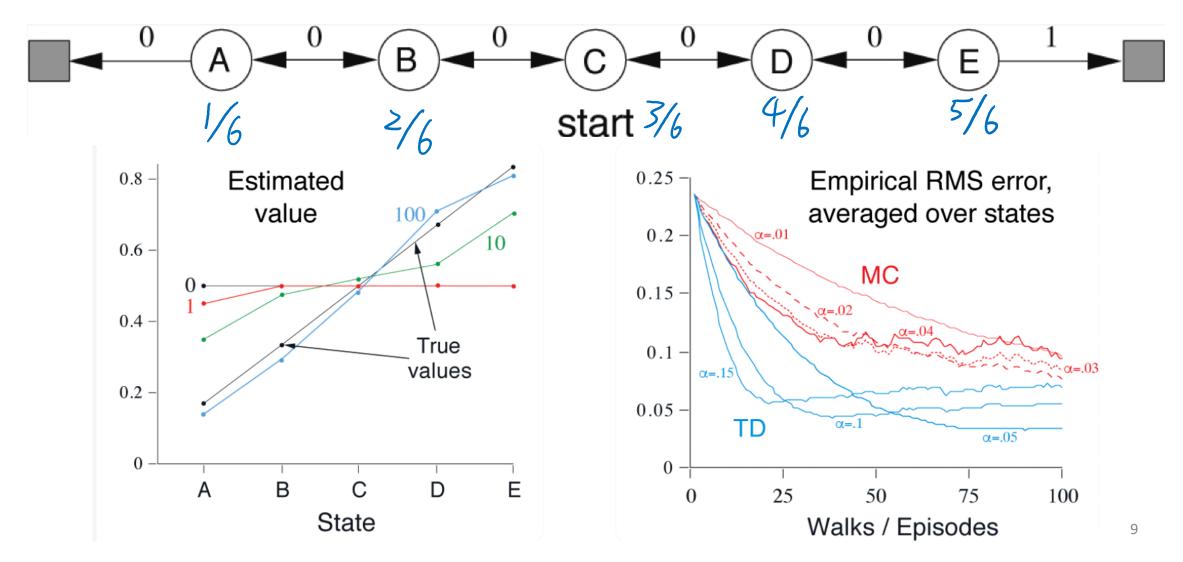
-Do not require knowledge of all states

• TD vs. Monte Carlo

-Some applications have very long episodes

Example: Random Walk

• Markov Reward Process



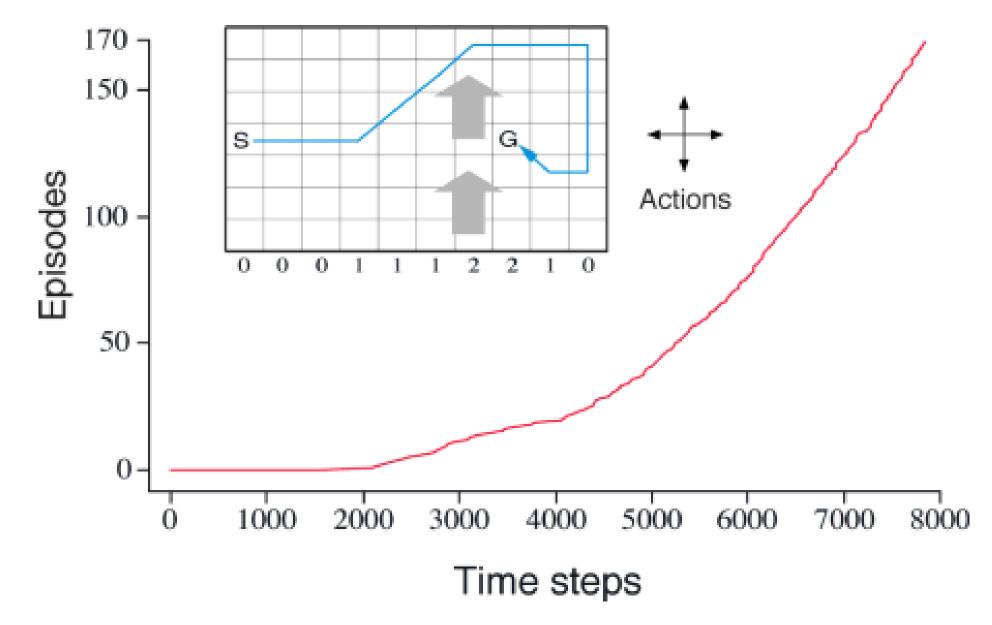
On-policy TD: SARSA

- Use state-action function Q
- One-step TD(0): S_t , A_t , R_t , S_{t+1} , A_{t+1}

$$\cdots \underbrace{S_t}_{A_t} \underbrace{R_{t+1}}_{A_{t+1}} \underbrace{S_{t+1}}_{A_{t+1}} \underbrace{R_{t+2}}_{A_{t+2}} \underbrace{S_{t+3}}_{A_{t+3}} \underbrace{S_{t+3}}_{A_{t+3}} \cdots$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big]$$

Windy Grid World



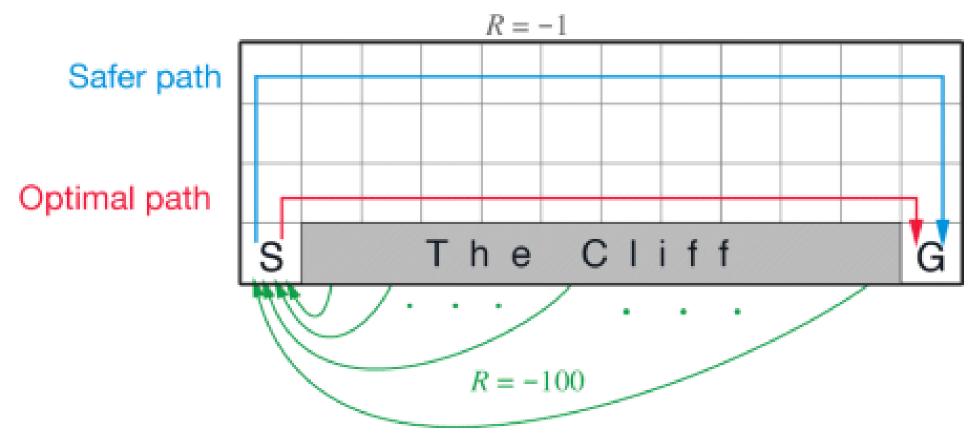
Off-policy TD: Q-Learning

• Target policy: Greedy policy

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Learning to Walk Cliff

- Agent sometimes falls to the cliff due to ϵ -greedy
- SARSA vs. Q-learning

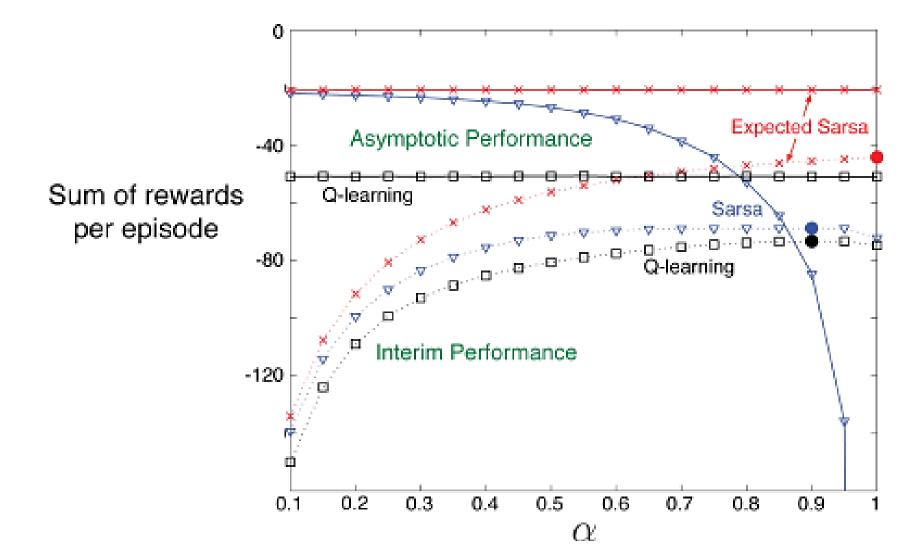


Expected SARSA

• Calculate expected value of next state

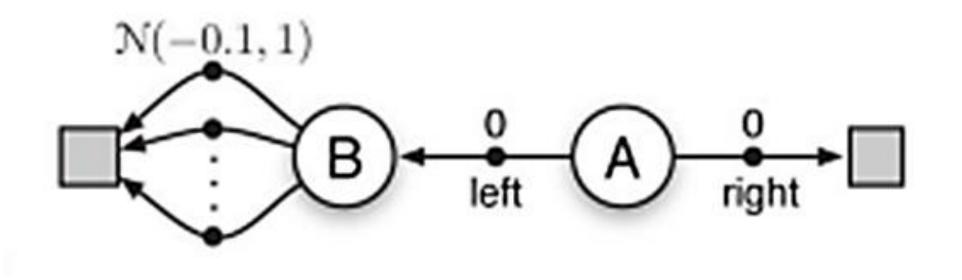
$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \mathbb{E}_{\pi} [Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \Big] \\ \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big],$$

Comparison on Cliff Walking



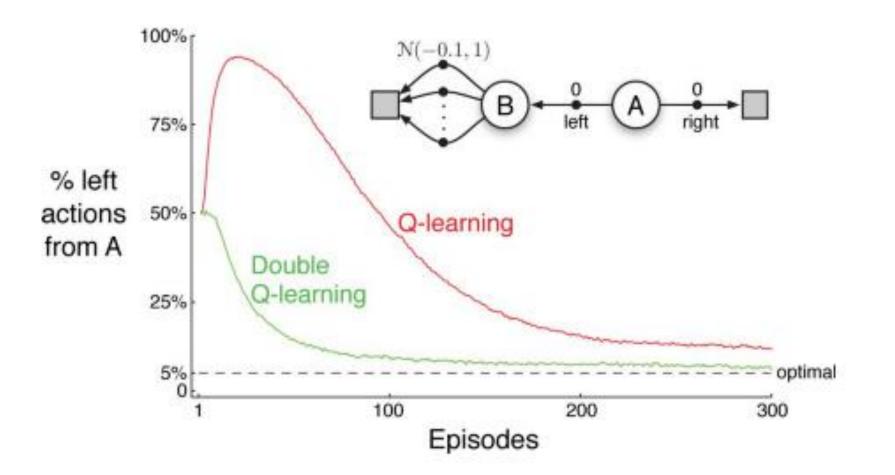
Maximization Bias

- State A has 0 reward
- State B reward is a normal distribution (mean=-0.1, variance=1)
- TD may favor B



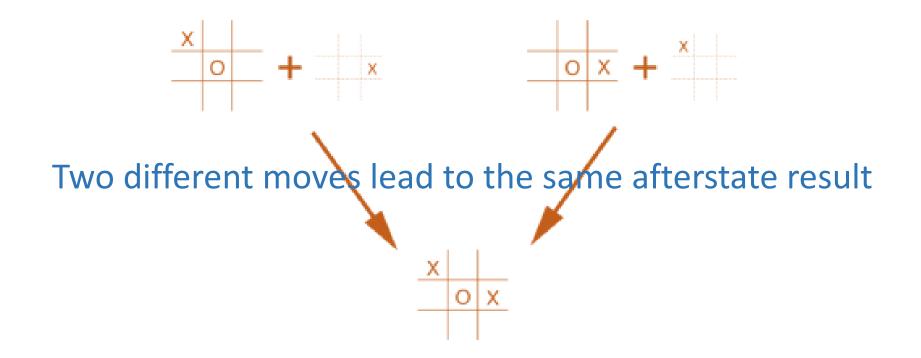
Double Q-Learning

 $Q_1(S_t, A_t) \leftarrow Q_1(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma Q_2 \big(S_{t+1}, \operatorname*{argmax}_a Q_1(S_{t+1}, a) \big) - Q_1(S_t, A_t) \Big]$



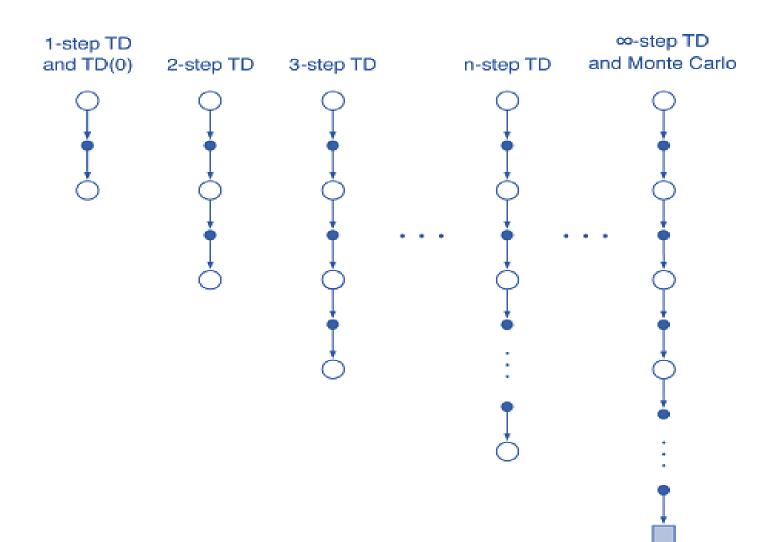
Special Value Function: Afterstate

 State-value function used in tic-tac-toe evaluates board positions after the agent has made its move



n-step TD Prediction

- n-step bootstrapping
- Combine 1-step TD
 with Monte Carlo

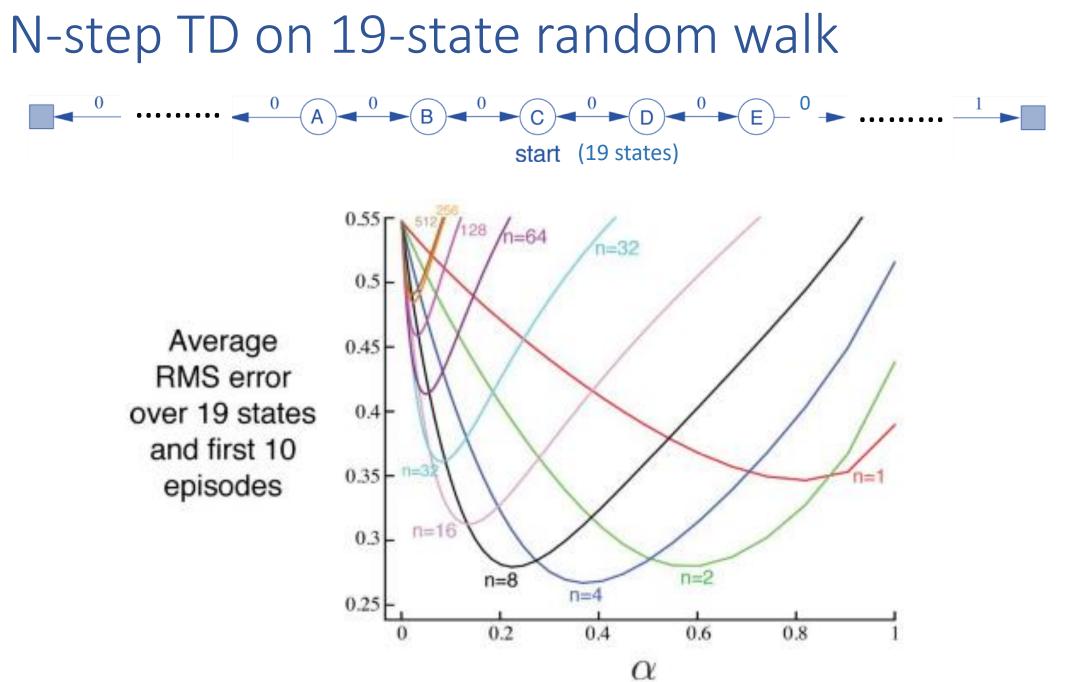


Formulating n-step TD

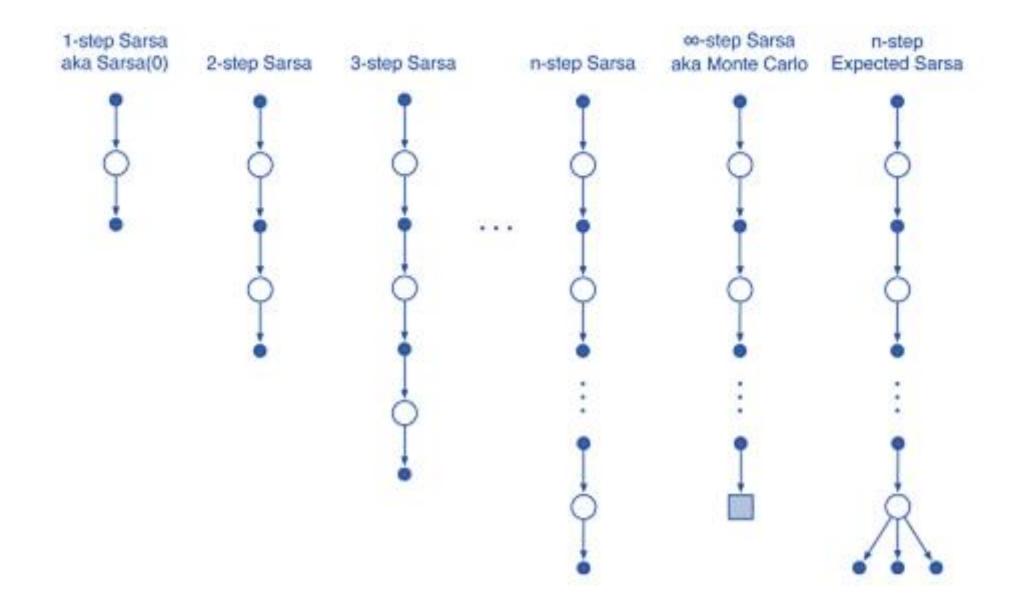
$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

$$G_{t:t+2} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 V_{t+1}(S_{t+2})$$

 $G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n})$ $V_{t+n}(S_t) \doteq V_{t+n-1}(S_t) + \alpha [G_{t:t+n} - V_{t+n-1}(S_t)]$



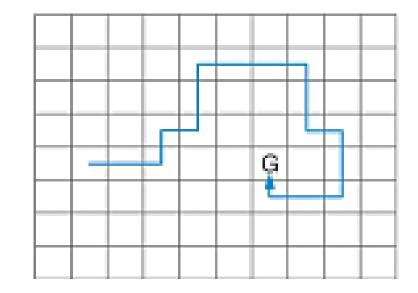
N-step SARSA

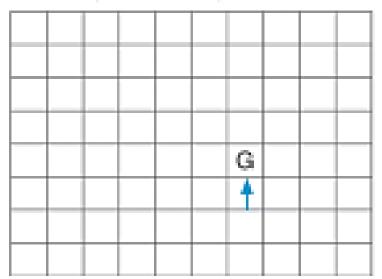


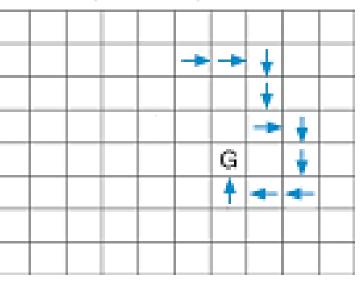
N-step SARSA

$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q_{t+n-1}(S_{t+n}, A_{t+n}), \quad n \ge 1, 0 \le t < T-n$$
$$Q_{t+n}(S_t, A_t) \doteq Q_{t+n-1}(S_t, A_t) + \alpha \left[G_{t:t+n} - Q_{t+n-1}(S_t, A_t)\right]$$

Action values increased by one-step Sarsa Action values increased by 10-step Sarsa





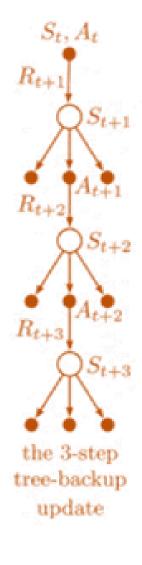


N-step Tree Backup

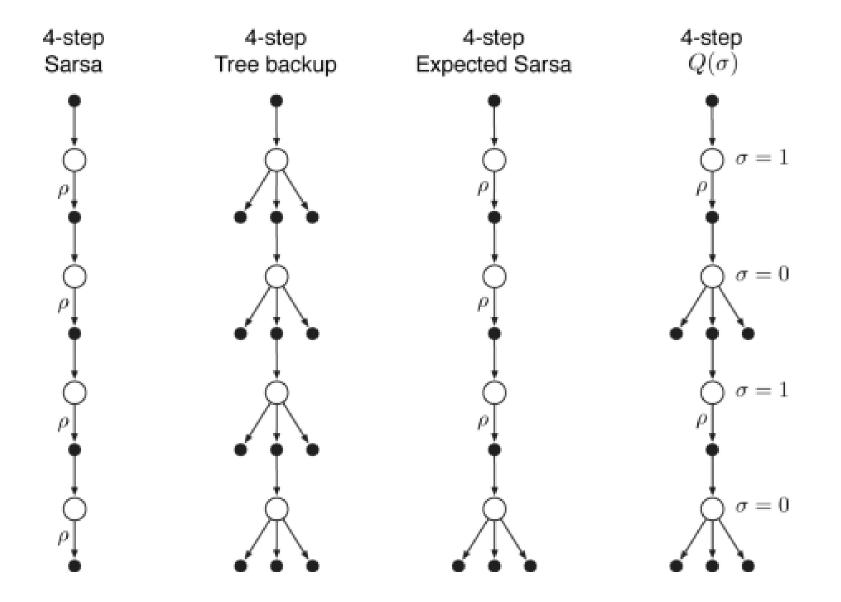
• Off-policy learning without importance sampling

$$\begin{aligned} G_{t:t+1} &\doteq R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q_t(S_{t+1}, a) \\ G_{t:t+2} &\doteq R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q_{t+1}(S_{t+1}, a) \\ &+ \gamma \pi(A_{t+1}|S_{t+1}) \left(R_{t+2} + \gamma \sum_{a} \pi(a|S_{t+2})Q_{t+1}(S_{t+2}, a) \right) \\ &= R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q_{t+1}(S_{t+1}, a) + \gamma \pi(A_{t+1}|S_{t+1})G_{t+1:t+2}, \end{aligned}$$

$$G_{t:t+n} \doteq R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q_{t+n-1}(S_{t+1}, a) + \gamma \pi(A_{t+1}|S_{t+1})G_{t+1:t+n} \end{aligned}$$



A Unifying Algorithm n-step $Q(\sigma)$

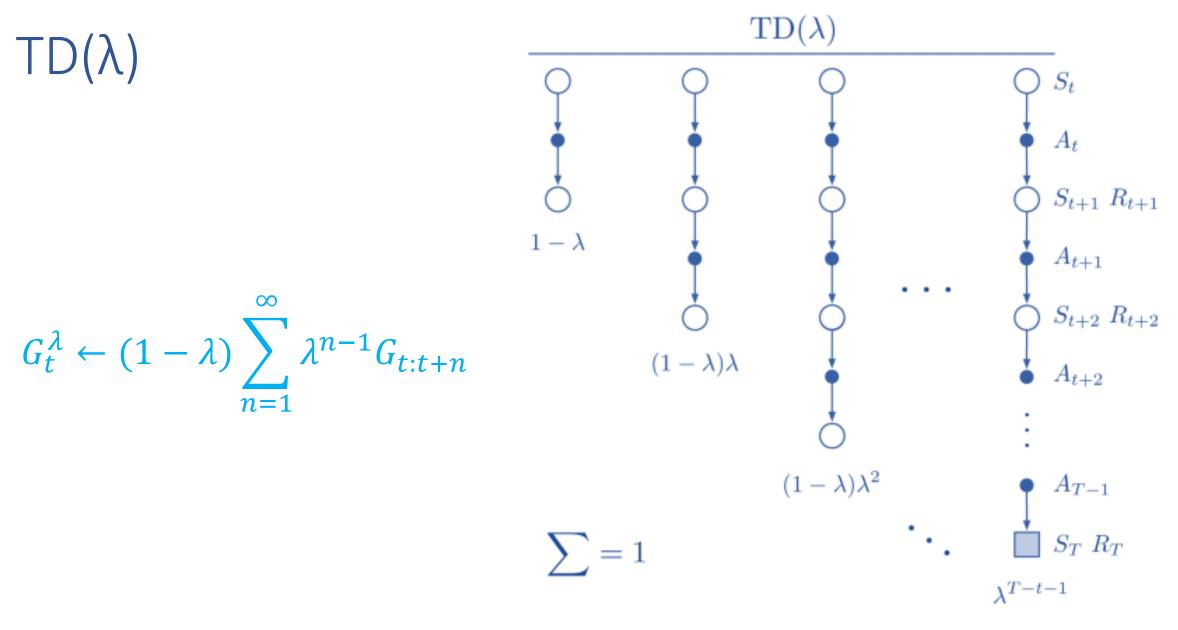


The λ Return

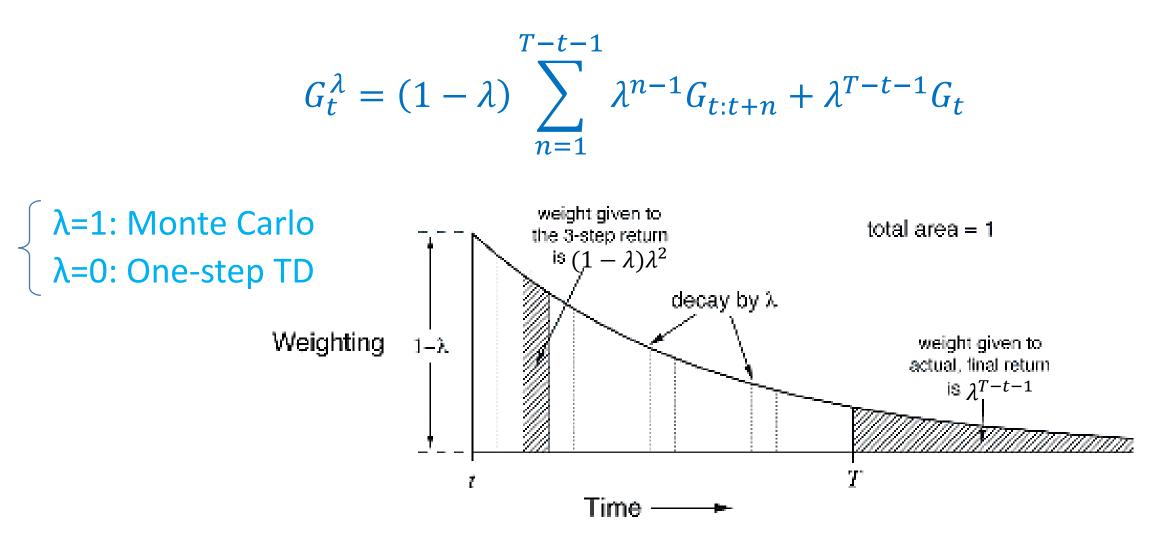
- Weighted sum of different n-step returns
- Compound update
- Sum of weights need to be 1
- Example:

$$\frac{1}{2}G_{t:t+2} + \frac{1}{2}G_{t:t+4}$$

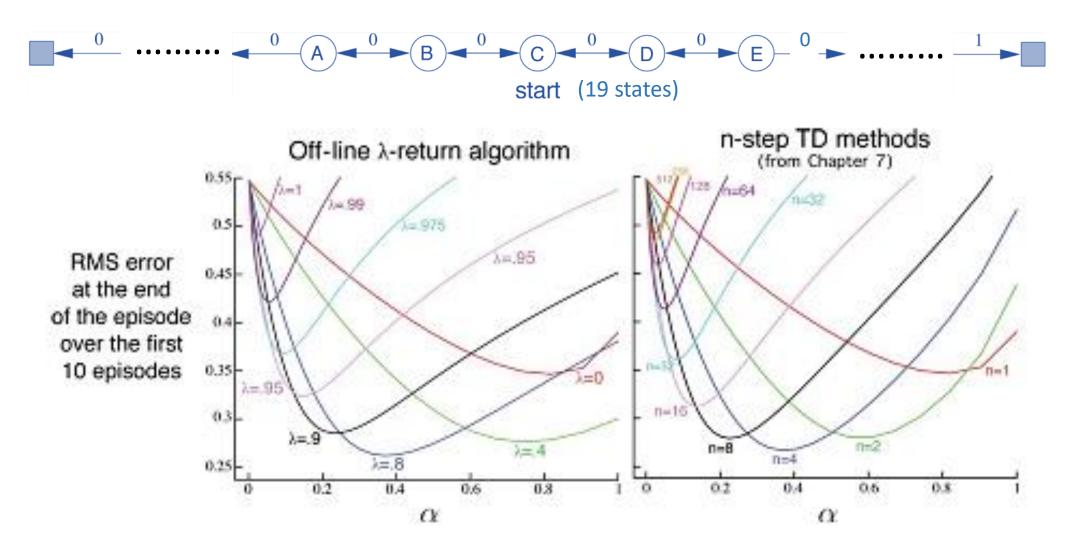
 $\overline{2}$



Weighting of each n-step Returns in λ Return

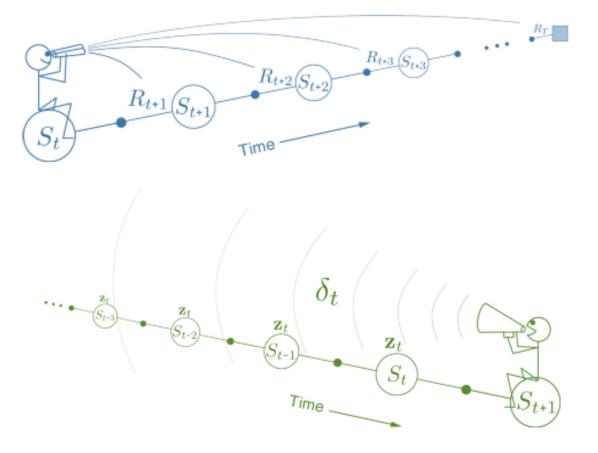


λ -return vs. n-step TD



Forward View vs. Backward View

 N-step TD (and DP) are based on forward view



- TD($\boldsymbol{\lambda})$ is oriented backward in time

- 1. David Silver, Lecture 4: Model-Free Prediction
- 2. Chapter 6, 7 and 12, Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction," 2nd edition, Nov. 2018