PROPERTY AND A STATE OF A STATE O

PRESIDENT STATE

The couple's provide the formation of a constant of the second states when the second states

(DING OF STER

And a second of Alasta start

PUBLIC CLAIR CLARMER

The state of the second

Constant and a light

Anter al antipage to an of the

Comparison of the Contraction of the

The Graph of Processing States of the States of States o

Policy Gradient

Prof. Kuan-Ting Lai 2020/5/22

A REAL PROPERTY.

Advantages of Policy-based RL

• Previously we focused on approximating value or action-value function:

 $V_{ heta}(s) pprox V^{\pi}(s)$ $Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$

• Policy Gradient methods focus on parameterize the policy:

$$\pi_{\theta}(s,a) = \mathbb{P}\left[a \mid s,\theta\right]$$

3 Types of Reinforcement Learning

Value-based

- Learn value function
- Implicit policy

Policy-based

- No value function
- Learn Policy directly
- Actor-critic
 - Learn both value and policy function

Model-based

Valuebased -critic DQN

Policybased Policy Gradient Better Sample Efficient

Less Sample Efficient

Model-based (100 time steps)

Off-policy Q-learning (1 M time steps)

Actor-critic

On-policy Policy Gradient (10 M time steps) Evolutionary/ gradient-free (100 M time steps)

Model-based

- Learn the model of the world, then plan using the model
- Update model often
- Re-plan often

Value-based

- Learn the state or state-action value
- Act by choosing best action in state
- Exploration is a necessary add-on

Policy-based

- Learn the stochastic policy function that maps state to action
- Act by sampling policy
- Exploration is baked in

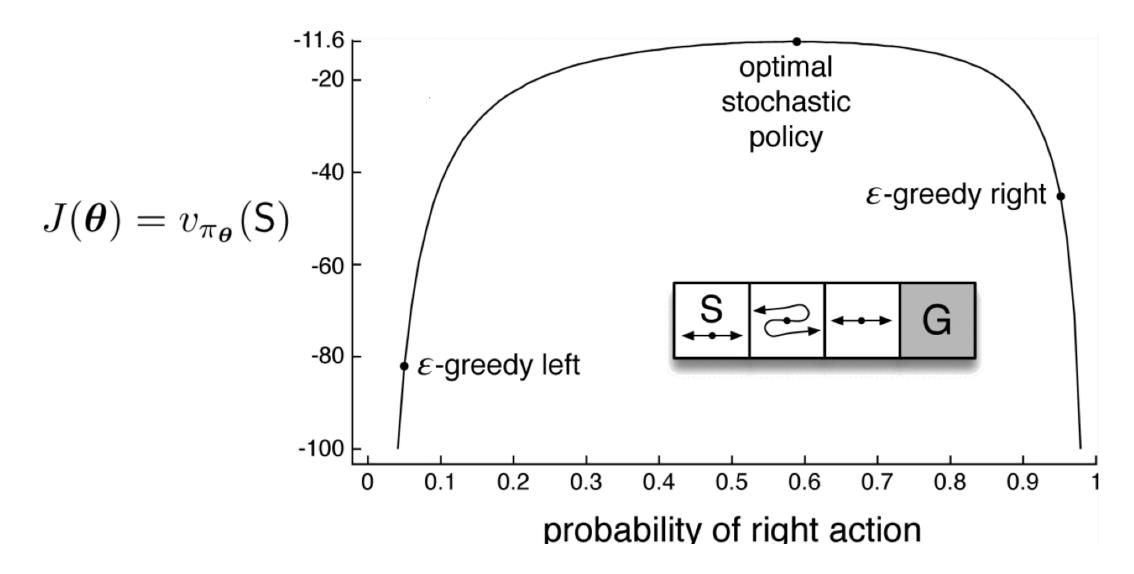
Lex Fridman, MIT Deep Learning, <u>https://deeplearning.mit.edu/</u>

Policy Objective Function

- Goal: given policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- How to measure the quality of a policy?

 $J(\theta) \leftarrow v_{\pi}(s_0) = E[\sum \pi(a|s)q_{\pi}(s,a)]$

Short Corridor with Switched Actions



Policy Optimization

- Policy-based RL is an optimization problem that can be solved by:
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton

Computing Gradients By Finite Differences

- Estimate kth partial derivative of objective function w.r.t. Θ
- By perturbing by small amount in *k*-th dimension

$$\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta + \epsilon u_k) - J(\theta)}{\epsilon}$$

where u_k is unit vector with 1 in *k*-th component, 0 elsewhere

- Simple, noisy, inefficient but sometime work!
- Works for all kinds of policy, even if policy is not differentiable

Score Function

• Assume π_{θ} is differentiable whenever it is non-zero

$$egin{aligned}
abla_{ heta} \pi_{ heta}(s,a) &= \pi_{ heta}(s,a) rac{
abla_{ heta} \pi_{ heta}(s,a)}{\pi_{ heta}(s,a)} \ &= \pi_{ heta}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a) \end{aligned}$$

• Score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$

Softmax Policy

Softmax function

 $\rho \pi_0(s, a)$ $T_{\mathcal{O}}(S, \mathcal{O}_{\lambda}^{+})$ ノン

Use linear approximation function

$$\phi(s,a)^TQ$$

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E}_{\pi_{\theta}} [\phi(s, \cdot)]$$

Policy Gradient Theorem

• Generalized policy gradient (proof @ Sutton's book, pg.325)

$$\nabla J(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla \pi(a|s, \boldsymbol{\theta}),$$

Theorem

For any differentiable policy $\pi_{\theta}(s, a)$, for any of the policy objective functions $J = J_1, J_{avR}, \text{ or } \frac{1}{1-\gamma}J_{avV}$, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{\pi_{\theta}}(s, a) \right]$$

Proof of Policy Gradient Theorem (2-1)

$$\nabla v_{\pi}(s) = \nabla \left[\sum_{a} \pi(a|s)q_{\pi}(s,a) \right], \text{ for all } s \in \mathbb{S} \quad (\text{Exercise 3.18})$$

$$= \sum_{a} \left[\nabla \pi(a|s)q_{\pi}(s,a) + \pi(a|s)\nabla q_{\pi}(s,a) \right] \quad (\text{product rule of calculus})$$

$$= \sum_{a} \left[\nabla \pi(a|s)q_{\pi}(s,a) + \pi(a|s)\nabla \sum_{s',r} p(s',r|s,a)(r+v_{\pi}(s')) \right] \quad (\text{Exercise 3.19 and Equation 3.2})$$

$$= \sum_{a} \left[\nabla \pi(a|s)q_{\pi}(s,a) + \pi(a|s)\sum_{s'} p(s'|s,a)\nabla v_{\pi}(s') \right] \quad (\text{Eq. 3.4})$$

$$= \sum_{a} \left[\nabla \pi(a|s)q_{\pi}(s,a) + \pi(a|s)\sum_{s'} p(s'|s,a) \quad (\text{unrolling}) \right] \sum_{a'} \left[\nabla \pi(a'|s')q_{\pi}(s',a') + \pi(a'|s')\sum_{s''} p(s''|s',a')\nabla v_{\pi}(s'') \right]$$

$$= \sum_{x \in \mathbb{S}} \sum_{k=0}^{\infty} \Pr(s \to x, k, \pi) \sum_{a} \nabla \pi(a|x)q_{\pi}(x,a),$$

Proof of Policy Gradient Theorem (2-1) $\nabla J(\boldsymbol{\theta}) = \nabla v_{\pi}(s_0)$ $= \sum_{s} \left(\sum_{k=0}^{\infty} \Pr(s_0 \to s, k, \pi) \right) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$ $= \sum \eta(s) \sum \nabla \pi(a|s) q_{\pi}(s,a)$ $=\sum_{s'}\eta(s')\sum_{s'}\frac{\eta(s)}{\sum_{s'}\eta(s')}\sum_{s}\nabla\pi(a|s)q_{\pi}(s,a)$ $= \sum_{s'} \eta(s') \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$ $\propto \sum \mu(s) \sum \nabla \pi(a|s) q_{\pi}(s,a)$

REINFOCE: Monte Carlo Policy Gradient

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{\pi} \left[\sum_{a} \pi(a|S_{t}, \boldsymbol{\theta}) q_{\pi}(S_{t}, a) \frac{\nabla \pi(a|S_{t}, \boldsymbol{\theta})}{\pi(a|S_{t}, \boldsymbol{\theta})} \right]$$

$$= \mathbb{E}_{\pi} \left[q_{\pi}(S_{t}, A_{t}) \frac{\nabla \pi(A_{t}|S_{t}, \boldsymbol{\theta})}{\pi(A_{t}|S_{t}, \boldsymbol{\theta})} \right]$$
(replacing *a* by the sample $A_{t} \sim \pi$)
$$= \mathbb{E}_{\pi} \left[G_{t} \frac{\nabla \pi(A_{t}|S_{t}, \boldsymbol{\theta})}{\pi(A_{t}|S_{t}, \boldsymbol{\theta})} \right],$$
(because $\mathbb{E}_{\pi}[G_{t}|S_{t}, A_{t}] = q_{\pi}(S_{t}, A_{t})$)

REINFORCE Update $\theta_{t+1} \doteq \theta_t + \alpha G_t \frac{\nabla \pi(A_t|S_t, \theta_t)}{\pi(A_t|S_t, \theta_t)}$

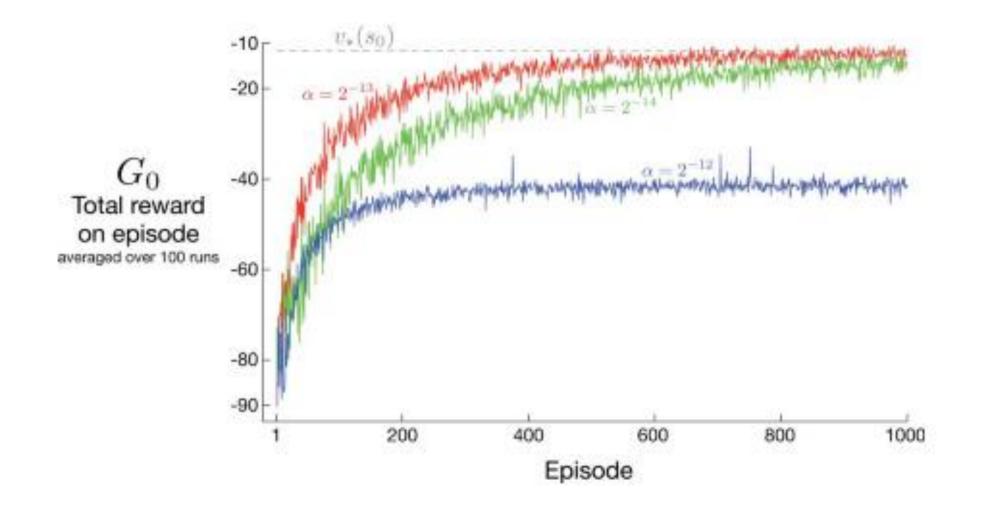
Pseudo Code of REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for n

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d}$ (e.g., to **0**)

> Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode $t = 0, 1, \dots, T-1$: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ $\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi(A_t|S_t, \theta)$ (G_t)

REINFORCE on Short Corridor



REINFORCE with Baseline

Include an arbitrary baseline function b(s)

$$\nabla J(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} \left(q_{\pi}(s, a) - b(s) \right) \nabla \pi(a|s, \boldsymbol{\theta})$$

- Equation is valid because

$$\sum_{a} b(s) \nabla \pi(a|s, \boldsymbol{\theta}) = b(s) \nabla \sum_{a} \pi(a|s, \boldsymbol{\theta}) = b(s) \nabla 1 = 0$$

Gradient of REINFORCE with Baseline

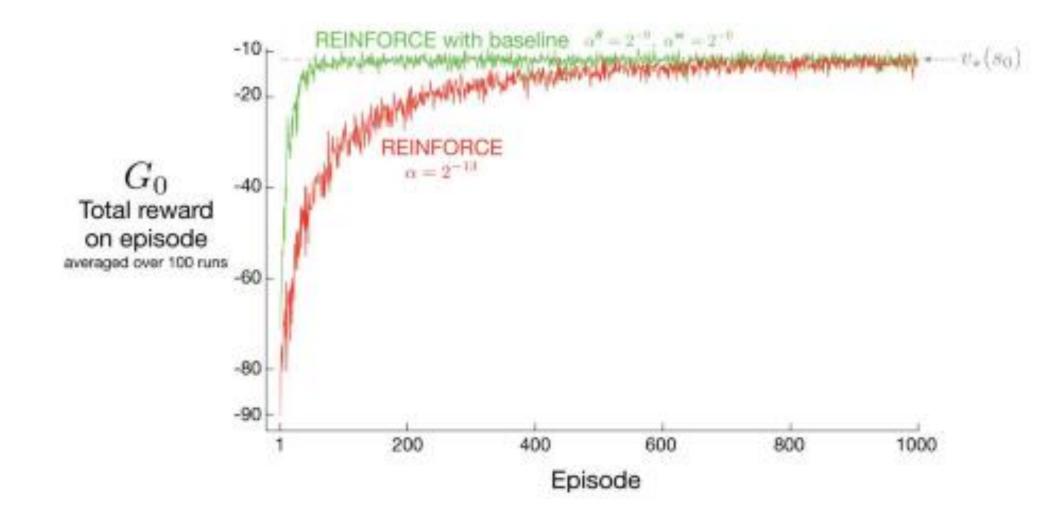
$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \Big(G_t - b(S_t) \Big) \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)}$$

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_{\theta}$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$ Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to $\mathbf{0}$)

Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode $t = 0, 1, \ldots, T - 1$: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ $\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$ $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})$ $\theta \leftarrow \theta + \alpha^{\theta} \gamma^t \delta \nabla \ln \pi(A_t|S_t, \theta)$ (G1)

Baseline Can Help to Learn Faster



Actor-Critic Methods

• Baseline cannot bootstrap

– Use learned state-value function as baseline -> Actor-Critic

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &\doteq \boldsymbol{\theta}_t + \alpha \Big(G_{t:t+1} - \hat{v}(S_t, \mathbf{w}) \Big) \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)} \\ &= \boldsymbol{\theta}_t + \alpha \Big(R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w}) \Big) \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)} \\ &= \boldsymbol{\theta}_t + \alpha \delta_t \frac{\nabla \pi(A_t | S_t, \boldsymbol{\theta}_t)}{\pi(A_t | S_t, \boldsymbol{\theta}_t)}. \end{aligned}$$

One-step Actor–Critic (episodic), for estimating $\pi_{\theta} \approx \pi_{\theta}$

```
Input: a differentiable policy parameterization \pi(a|s, \theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{w} > 0
Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S(first state of episode)
    I \leftarrow 1
    Loop while S is not terminal (for each time step):
    A \sim \pi(\cdot|S, \theta)
    Take action A, observe S', R
    \delta \leftarrow R + \gamma_{\hat{v}}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) (if S' is terminal, then \hat{v}(S', \mathbf{w}) \doteq 0)
    \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \, \delta \, \nabla \, \hat{v} \, (S, \mathbf{w})
    \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{\theta} I \delta \nabla \ln \pi (A|S, \boldsymbol{\theta})
    I \leftarrow \gamma I
    S \leftarrow S'
```

Policy Gradient for Continuing Problems

Continuing problem (No episode boundaries)

– Use average reward per time step: $TD(\lambda)$

$$J(\boldsymbol{\theta}) \doteq r(\pi) \doteq \lim_{h \to \infty} \frac{1}{h} \sum_{t=1}^{h} \mathbb{E}[R_t \mid S_0, A_{0:t-1} \sim \pi]$$

$$= \lim_{t \to \infty} \mathbb{E}[R_t \mid S_0, A_{0:t-1} \sim \pi]$$

$$= \sum_{s} \mu(s) \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a)r$$

Actor–Critic with Eligibility Traces (continuing), for estimating π_{θ}

≈ *π*.

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Input: a differentiable state-value function parameterization \hat{v} (*s*, **w**) Algorithm parameters: $\lambda^{\mathbf{w}} \in [0, 1], \lambda^{\boldsymbol{\theta}} \in [0, 1], \alpha^{\mathbf{w}} > 0, \alpha^{\boldsymbol{\theta}} > 0, \alpha^{\overline{R}} > 0$ Initialize $R \in \mathbb{R}$ (e.g., to 0) Initialize state-value weights $\mathbf{w} \in \mathbb{R}^d$ and policy parameter $\boldsymbol{\theta} \in \mathbb{R}^d$ (e.g., to **0**) Initialize $S \in \Box$ (e.g., to s_0) $\mathbf{z}^{\mathbf{w}} \leftarrow \mathbf{0}$ (*d*-component eligibility trace vector) $\mathbf{z}^{\theta} \leftarrow \mathbf{0} (d'$ -component eligibility trace vector) Loop forever (for each time step): $A \sim \pi(\cdot | S, \theta)$ Take action A, observe S', R $\delta \leftarrow R - R + \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})$ $R \leftarrow R + \alpha^R \delta$ Actor-Critic with $\mathbf{z}^{\mathbf{w}} \leftarrow \lambda^{\mathbf{w}} \mathbf{z}^{\mathbf{w}} + \nabla \hat{v}(\mathcal{S}, \mathbf{w})$ $\mathbf{z}^{\boldsymbol{\theta}} \leftarrow \lambda^{\boldsymbol{\theta}} \mathbf{z}^{\boldsymbol{\theta}} + \nabla \ln \pi (A|S, \boldsymbol{\theta})$ **Eligibility Traces** $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \mathbf{z}^{\mathbf{w}}$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \, \delta \mathbf{z}^{\boldsymbol{\theta}}$ $S \leftarrow S'$

Policy Parameterization for Continuous Action

$$\pi(a|s,\theta) \doteq \frac{1}{\sigma(s,\theta)\sqrt{2\pi}} \exp\left(-\frac{(a-\mu(s,\theta))^2}{2\sigma(s,\theta)^2}\right)$$

$$\mu(s,\theta) \doteq \theta_{\mu}^{\top}\mathbf{x}_{\mu}(s) \quad \text{and} \quad \sigma(s,\theta) \doteq \exp\left(\theta_{\sigma}^{\top}\mathbf{x}_{\sigma}(s)\right)$$

$$\nabla_{\theta} \log \pi_{\theta}(s,a) = \frac{(a-\mu(s))\phi(s)}{\sigma^2}$$

- 1. David Silver, Lecture 7: Policy Gradient
- Chapter 13, Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction," 2nd edition, Nov. 2018