
Speaker: Jia-Ming Lin

Xilinx & Vivado IDE



Outlines

● Recap. PYNQ Framework

● FPGA Architecture

● FPGA Design Process

● Design Optimization

● Lab1: 
○ Creating hardware design by using Vivado HLS

○ Generating Bitstream

○ Validating on FPGA.

2



Recap. PYNQ Framework

● Interactive computing environment 
based on Jupyter Notebook

● Using Python to invoke hardware 
libraries and overlay in Programmable 
Logic 

● Through PYNQ, we can easier to create 
high performance applications with

○ Parallel hardware execution

○ Hardware acceleration algorithm

○ High frame-rate video processing.

3



What is an Overlay?

● Hardware library, consisted of one or several IPs

● Extends user application from Processing System(CPU) to Processing 
Logic(FPGA)

○ Speed-up or customize the hardware platform for a particular application.

● Example: PYNQ base overlay

4



Case Study: Video input/output

HDMI_IN

● Two Methods
a. OpenCV on ARM A9s
b. HDMI_IN and HDMI_OUT on Processing Logic

● Which one is better? In terms of throughput(FPS), energy consumption(Watt)

HDMI_OUT
DMA

ARM A9s DRAM

Method (b)Method (a)
● USB Webcam on USB port of Zynq 

PS(CPU)
● Capture image and stored to DRAM
● OpenCV package is used

Source code reference: 
https://gist.github.com/cathalmccabe/b0ab8
917f748840f0d3959f7eabf0f82

5

https://gist.github.com/cathalmccabe/b0ab8917f748840f0d3959f7eabf0f82
https://gist.github.com/cathalmccabe/b0ab8917f748840f0d3959f7eabf0f82


FPGA Architecture

6



Field Programmable Gate Arrays(FPGAs)

● Recap, Programmable Logic Device
○ Contains an array of AND gate & another array of OR gate

○ Users can configure these devices in order to implement the Boolean functions

○ E.x. some form of sum-of-product.

● Idea behind FPGA,
○ Programmable/configurable logic blocks,

○ Programmable interconnections between logic blocks

■ Configure how the logic blocks are connected

● Two dominant FPGA makers
○ Xilinx and Altera

7



Configurable Logic Block(CLB) or Slice

● Based on Look-up Tables(LUTs), Flip-Flop and other specialized 
functions(e.g. Full Adder)

Look-up Table

Flip-Flop
● Basic memory 

element

8



Configurable Logic Block(CLB) or Slice

● Configuring the FPGA

● LUTs are configured using Bitstream
● Example, truth table for a 2 input AND gate

9



Programmable Interconnections

● Flexible network connections of CLBs(or Slices)

● At each interconnect, there is 
a switch transistor which is 
default OFF

● Each switch is controlled by 
a 1-bit register

● Configuring routing is simply 
put 0 or 1 into the register

10



● As the number of  transistors 
on FPGA increasing...

● More “hard” resources

● DSP48

○ Mul, Add, MAC

○ Higher frequence

○ Not flexible as CLB

● Microprocessors

○ ARM or x86

● Block RAM (BRAM)

○ Transfer data

○ Store large data on-chip

Modern FPGAs

11



Comparison of three different on- and off-chip memory 
storage options

● External Memory: highest density, lowest bandwidth

● FFs: highest total bandwidth, limited amount of data storage capability.

● BRAM: intermediate value between external memory and FFs

12



PYNQ-Z2

ARM A9 
and  

FPGA
DRAM

13



FPGA Design Process

14



Block diagram showing a hypothetical embedded FPGA 
design

● I/O Interface Core: highly constrained by timing, RTL implemented
● Standard Core: Generic, fixed-function processing, 

○ Processor core, on-chip memory, interconnections
● Accelerator core:

○ Where we focus on and develop by using HLS. 15



Design Optimization

16



Benchmarking Metrics for Hardware Design

● Accuracy
○ Quality of result for a given task

● Throughput
○ Analytics on high volume data

○ Real-time performance (e.g., video at 30 fps)

● Latency
○ For interactive applications (e.g., autonomous navigation)

● Energy and Power
○ Edge and embedded devices have limited battery capacity

○ Data centers have stringent power ceilings due to cooling costs

● Hardware Cost

Reference: https://www.rle.mit.edu/eems/wp-content/uploads/2019/09/2019_icip_tutorial.pdf 17

https://www.rle.mit.edu/eems/wp-content/uploads/2019/09/2019_icip_tutorial.pdf


Definitions

● Task
○ Function invocation, e.g. int32_t func(int32_t a)

● Task latency
○ Time between task start and when it finishes

● Task interval
○ Time between one task starts and the next starts

● Horizontal Axis: time
● Vertical Axis: Functional units in design

○ E.g. Mul(*), Add(+)
● Four executions of a design, starting a 

new task every cycle

18



Area/Throughput Tradeoffs

● Example: FIR filter
○ 1-Dim convolution
○ Key question: what circuit is generated from this code?

Inner-product

Left shift one

2 1 1 4 5 6

1 2 1

5 7 14 20

2 1 1 4 5 6

1 2 1

5 7 14 20

19



Area/Throughput Tradeoffs

Design 1
● Advantage: Less resources on multiplication and add operations
● Disadvantage: Higher latency
● Disadvantage: more resources on control logics

● Architecture generated from previous slide

20



Area/Throughput Tradeoffs

Design 2
● Advantage: Higher processing rate, less latency
● Advantage: Simpler architecture
● Disadvantage: Need more resources on Mul and Add

● With little modifications on HLS(Next week)

21



In this course

22



Lab 1: Overlay Tutorial

23



Overview

● Developing a Single IP
○ Intellectual Property(IP) is a reusable IC design that is the intellectual property of one party.
○ Using Vivado HLS

● Generating Bitstream and download to FPGA
● Interact with our own IP by using PYNQ

24



Developing a Single IP using Vivado HLS

Open the Vivado HLS 2020.1 IDE

Short path on desktop
25



Developing a Single IP using Vivado HLS

Create the Project

2. Project Name

3. Project Location

5. Press to Skip

6. Press to Skip

4. Next

1. Click to Create 
Project

26



Developing a Single IP using Vivado HLS

Create the Project

7. Select 
Device

8. Click to select board

9. Select PYNQ-Z2

10. Click OK

27



Create Project

Developing a Single IP using Vivado HLS

11. Make sure the 
selected device is 

PYNQ-Z2
12. Click if 

everything ready

File 
Browser

Coding 
Area

Console

Toolbar

28



Create New Files

Developing a Single IP using Vivado HLS

Right Click 
New File...

Three new files…
● Under Source, 

(1) top.h: Define datatype or function, ...
(2) top.cpp: Hardware design implementation

● Under Test Bench, 
(1) testbench.cpp: Check hardware/software 
result is matched.

29



Developing a Single IP using Vivado HLS
top.h

top.cpp

testbench.cpp

30



● Toolbar:   

○     C Simulation: Check the design output is same with software implementation

○     C Synthesis: 

■ Generate RTL design(e.g. Verilog) from HLS C code

■ Performance and Resource consumption report

○     C/RTL Cosimulation: Check RTL output is matched with software implementation.

○     Export RTL: wrap the design to an IP module

● In this Lab, click “C Simulation” → “C Synthesis” → “Export RTL”

Developing a Single IP using Vivado HLS

31



● Open Vivado

Generating Bitstream and Download to FPGA

Short path on desktop
32



● Create Vivado Project

Generating Bitstream and Download to FPGA

1. Click to 
    Create Project

2. Click Next

33



● Create Vivado Project

Generating Bitstream and Download to FPGA

3. Project Name

4. Project Location

5. Next

6. Select RTL Project

7. Select not specify sources

8. Next

34



● Create Vivado Project

Generating Bitstream and Download to FPGA

9. Switch to Boards Tag

10. Scroll down

11. Find and select PYNQ-Z2

12. Next

13. Confirm the settings

14. Finish

35



Generating Bitstream and Download to FPGA

1. Click Settings

● Import HLS IP

2. Select IP/Repository Tag

3. Click to select 
    HLS IP path

36



Generating Bitstream and Download to FPGA

● Import HLS IP

4. Navigate to 
    HLS Project path.
    And select

5. Click Select, Apply, OK

6. Select 
    “Create Block Design”
    And click OK

7. Click “+” to add modules

8. Search keyword “hls”, then 
our HLS IP would show up.

9. Select the IP

37



● Constructing Block Design

Generating Bitstream and Download to FPGA

The Created Block Design View

1. Search keyword 
    “zynq”

2. Select the module

3. Click “Run Block Automation”, and OK

4. Click “Run Connection Automation” and OK

38



● Constructing Block Design

Generating Bitstream and Download to FPGA

5. Click to validate design

39



Generating Bitstream and Download to FPGA

● Generate Bitstream

1. Select Sour tag

2. Right Click and 
    select “Create HDL Wrapper”

3. Select the second

4. Click OK

40



Generating Bitstream and Download to FPGA

● Generate Bitstream

5. Click Generate Bitstream, Yes, OK

The compiler is running… be patient

41



Generating Bitstream and Download to FPGA

● Generate Bitstream

On the Bistream complete, click Cancel

42



Generating Bitstream and Download to FPGA

● Two Design files
○ <Your Design Path>/<Your Project Name>.srcs 

/add_ip_design.srcs/sources_1/bd/design_1/hw_handoff/design_1.hwh
○ <Your Design Path>/<Your Project Name>.runs/impl_1/design_1_wrapper.bit

● Power on PYNQ-Z2 and create new folder from Jupyter-Notebook

1. Create New Folder
2. Rename folder

43



● Transfer two design files to PYNQ-Z2 by using file upload in  
Jupyter-Notebook

Generating Bitstream and Download to FPGA

1. Upload files

2. Rename “design_1_wrapper.bit” to “design_1.bit”

44



Generating Bitstream and Download to FPGA

● Create new Notebook, named “add.ipynb”

Interact with the IP using register map

Interact with the IP using offset

Download bitstream to FPGA

45



Summary 

● FPGA Architecture
○ CLB, 
○ Programmable Interconnection
○ Modules in Morden FPGA
○ Memory Hierarchy

● Design Optimization
○ Task
○ Task Latency
○ Task Interval

● Next Week
○ PP4FPGA chapter 2: Hardware Implementation of Finite Impulse Response and 

Optimizations.

46


