
Finite Impulse Response(FIR)
Filter

Lecturer: Jia-Ming Lin

Outline

● Background
● Base FIR Architecture
● Calculating Performance
● Design Optimization

○ Loop Unrolling
○ Loop Pipelining
○ Avoid if/else branch condition

● Lab
○ Lab 3-1: Practice with small filter size N=11.
○ Lab 3-2: Performance tuning for larger filter size N=512.

2

Background

3

Background
● Applications

○ Signal restoration

■ Reduce the high frequent noise

○ Signal separation

■ Isolate input signal into different parts

● Digital filters
○ Infinite Impulse Filter(IIR)

■ Advantage: lower computational complexity; disadvantage: unstable

○ Finite Impulse Filter(FIR)

■ Advantage: stable; disadvantage: higher computational complexity

○ Refer to this video for more theoretical details

● We investigate the methods to speedup FIR algorithm

4

https://www.youtube.com/watch?v=CyOYxcsAUWQ

Background
● Definition

○ FIR algorithm, can be computed through the process of 1-D convolution.

○ N-tap FIR

○ Example: 4-tap FIR

 is constant vector over time

5

Background
● Real-world example

○ Signal separation via FIR,

○ Python implementation, Github.

○ Input:

■ Audio(wav): data type=int16, 44100 samples/sec.

■ Filter:

● Symmetry

● Value can be changed for different environments

● Tap size = 461 entries (461-Tap FIR)

○ Architecture:

■ Two low-pass filter, two high pass filter

■ Final output is the average of four FIR outputs

6

https://github.com/inodir/Signal-Separation-via-Finite-Impulse-Response

Base FIR Design

7

Functionally Correct Implementation

Streaming function, fir

● Receive/output on sample at a time

○ “x” is the input port

○ “y” is the output port

● Function is called multiple time

● Input/output data type:
16-bit, 8-bit, integer, fixed-point etc.

8

Components in the function

● “coef_c”, hard coded coefficient array

● “shift_reg”, cache for previous samples,

○ Streaming function receives only one
sample at a time

○ But we need N=11 consecutive samples
to output a result

○ static, since data must be persistent
across multiple function calls

■ Initial value = 0

Functionally Correct Implementation

9

Functionally Correct Implementation
Components in the function

● “acc”, accumulator for multiple multiplications

○ To prevent numerical overflow

○ e.g. (int8+int8) need 9-bit integer to store
the value for correctness

○ Reset to “0” while each function call.

10

Functionally Correct Implementation
Shift_Accum_Loop: each iteration

● Multiply one sample with one coefficient

○ N=11 iterations

● “acc” stores the running sum

○ How many bits for “acc” is needed?

○ Depends on the input data and application
requirements.

● Shift values in “shift_reg”, as FIFO

○ shift_reg[i+1]=shift_reg[i]

11

Functionally Correct Implementation

● One multiplier

● N iterations to complete an output

● 4 cycles for each iteration

○ 2 cycles for parallel data read

■ 2 for read coefficient from “tabs[]”

■ 1 for read input

○ 1 for mul, 1 for add 12

Performance Estimation

13

Performance of Baseline and Challenges

● How long is the latency for obtaining an output y?
○ 4 cycles for each iteration

○ To output a result, need N iteration

○ Suppose one clock cycle takes 10 ns

○ If N = 461, it takes 4*461*10 = 209920 ns = 20us to obtain an output

● For an input audio sampling rate = 44100 samples/sec.
○ (1/44100) * 10^6 = 22.67 us

○ New sample will come in system in every 22.67 us

● Processing latency = 20 us, is really closed to sampling period = 22.67 us

● Practically, we wish processing latency is as less as possible.

14

Performance of Baseline and Challenges

● Suppose we use Ns DSP to process Ns multiplications parallelly

○ For the case N = 512 and data type = int16

○ It may take 4 cycles to obtain an output, it’s 512x speedup.

○ However, one 16-bit*16-bit multiplication needs one DSP,

○ 512 multiplications need 512 DSP, which exceeds 280, the DSP limit on PYNQ-Z2

● How about parallely perform Ms multiplication?

○ M is a proper divisor of N

○ Then how much speedup can we achieve?

15

Design Optimizations

16

To increase parallelism

17

● Loop Unrolling

○ Multiple copies of processing elements for higher throughput

● Loop Pipelining

○ Parallel executions of multiple stages

○ Possibly multiple tasks run concurrently

● Avoid if/else branch condition in regular loop

Loop Unrolling
● By default, Vivado HLS synthesize the “for” loop in a sequential manner.
● Advantage: area efficient architecture
● Disadvantage: ignore possible parallelism across loop iterations

18

Loop Unrolling

● Replicate the loop body by some number(factor) of the line.
● Two methods, automatically and manually
● Example: unroll factor = 5
● Ideally, every copies are executed parallely.

// manually
for(int i = 0; i < 2; i++){

…
Loop Body Copy 1
Loop Body Copy 2
Loop Body Copy 3
Loop Body Copy 4
Loop Body Copy 5
…

}

// automatically
for(int i = 0; i < 10; i++){
#pragma HLS UNROLL factor = 5

…
Loop Body
...

}

Equivalent

Note: complete unroll without specifying the factor
 i.e. N=10 parallel copy executions. 19

Loop Unrolling

● Ideally, every copies are executed parallely…
● Some exceptions…

○ Limited by the shared resources across different copies.
○ Example:

data_t shift_reg[N];
...
for(int i = 0; i < 2; i++){

…
Loop Body Copy 1
Loop Body Copy 2
Loop Body Copy 3
Loop Body Copy 4
Loop Body Copy 5
…

}

● Simultaneous 5 reads to “shift_reg”

● Usually large array, e.g. “shift_reg” is implemented by
BRAM

● BRAM has two read ports and one write port

○ Support 2 reads or 1 read 1 write in a cycle

● Only 2 copies can run simultaneously at most.

Memory Hierarchy Recall

20

Loop Unrolling Schedule
Viewer

If “shift_reg” is RAM_2P_BRAM
implemented

At most 2 data read on “shift_reg”

● Data Hungry

21

Array Partition
● Separate the memory into several partitions

○ To support higher parallelism
● Example, Suppose a single port memory:

○ Only one read or write in a cycle

0

1

2

...

9

10

Before Partitioning

● Single port constraint

● Read to 1 and
Read to 2 are serialized

0

2

4

6

8

10

1

3

5

7

9

After Partitioning

● Still single port
constraint for each

● Read to 1 and
Read to 2 can be
parallelized

22

Array Partition

● Implementation in HLS

○ variable(required): array to be partitioned
○ factor(optional): how many partitions are there
○ PARTITION_TYPE: cyclic, block, complete

data_t shift_reg[N];
#pragma HLS ARRAY_PARTITION variable=shift_reg factor=K <PARTITION_TYPE>

Before
Partition

Cyclic
Partition

Block
Partition 23

Array Partition

● Implementation in HLS

Schedule Viewer

● Parallelize 4 reads to “shift_reg”

○ E.g. Read 0, 1, 2, 3 concurrently

● Therefore partition type is cyclic

24

Loop Pipelining

● By default, Vivado HLS synthesize the “for” loop in a sequential manner.
○ Second iteration happen only when all statements in first iteration are complete.

● It is possible to perform different statements from different iterations in parallel.
○ e.g. at T1, iteration 1 is executing S2, while iteration 2 is executing S1

○ After pipelining, iteration 1 and iteration 2 is executed parallelly.

T0 T1 T2 T3 T4 T5

S1

S2

S3

Iteration 1 Iteration 2

T0 T1 T2 T3

S1

S2

S3

Loop
Pipelining

25

Loop Pipelining

● Initiation Interval (II)
○ # of clock cycles until the next iteration of the loop can start

II = 3 II = 2 II = 1

26

Loop Pipelining

● Calculating # of clock cycles that a “for” loop takes (loop latency)
○ Sequentially

■ (# of clock cycles for an iteration) * (# of iterations)

○ Pipelined

■ (# of clock cycles for an iteration) + (Initiate Interval)*(# of iterations - 1)

Latency = 3*2 = 6 Latency = 3+(2*1) = 5 Latency = 3+(1*1) = 4

27

Loop Pipelining

● Implementation in HLS
○ Speedup 2x in this example

Before pipelining
conditional branch

After pipelining
conditional branch

N = 256, clock period = 10 ns 28

Avoid branching condition in the loop

● if/else statements(control structure) in the loop
○ Statements can only be executed after the condition statement is resolved

● For regular or predictable loop, we can have more refactoring opportunities

Before removing
conditional branch

After removing
conditional branch

Here, N = 256 29

Labs

30

Lab 3-1: Practice with small filter size N=11

● Prepare lab files
○ Download the files from here.

○ Four files in the package,

■ (1) fir.c: design implementation.

■ (2) fir.h: header file, define data types, functions

■ (3) fir_test.c: compare results from hardware and software

■ (4) out.gold.dat: golden data

● Column 1: sample index

● Column 2: input sample value

● Column 3: output of FIR
31

https://drive.google.com/file/d/1llWkc0YeDUHEkZh38nQSHPKu3pu1De57/view?usp=sharing

Lab 3-1: Practice with small filter size N=11

● Open Vivado HLS 2020.1
● Create New Project

○ Add the downloaded files into project

1. Add Files...:
○ Select “fir.c” and “fir.h”

2. Specify top function
○ Browse and select “fir”

3. Add Files...:
 Select “fir_test.c”
 and “out.gold.dat”

32

Lab 3-1: Practice with small filter size N=11

● C-Simulation and C Synthesis

○ On the toolbar, click Toolbar

Schedule ViewerSynthesis Report

Analysis Tab

33

Lab 3-1: Practice with small filter size N=11

● Try the optimization techniques learned today
○ Loop Unrolling
○ Loop Pipelining
○ Avoid branch condition

● Try to read the synthesis report and schedule viewer

34

Lab 3-2: Performance tuning for larger filter size N=512.

● Change N = 512 in the header file
○ 512-tap FIR filter
○ Ignore C-simulation check with testbench, we don’t have the data yet.

● To get today’s full credit, try your best to suppress my result.
○ Lower latency
○ Reasonable resource consumption

● Hints:
○ Apply all the optimization techniques we learned today
○ Relation:

Behavior “Shift” on “shift_reg” → array partition
○ Look into “Schedule Reviewer” to check the

schedule is exactly matched with your thoughts
○ *Considering “symmetry” property of filter(optional)

35

Summary

● Understanding the algorithm, application workload

○ Then we can design good accelerator.

● Optimization Techniques

○ Loop Unrolling, Loop Pipelining, Avoid branch condition

● When considering parallelization, don’t forget the memory bandwidth support.

● Next time

○ Introduction to the interfaces(AXI streaming), so that we can port the design on PYNQ-z2

36

Appendix: Array Reshape v.s. Array Partition

37

Array Reshape

38

Increase bandwidth, similar to Array Partitioning
And has higher BRAM utilization

Block RAM in FPGA

39

Mapping Data on Block RAM

40

36-bit

Depth
1024

● For array A

○ Width = 36-bit

○ Depth = 512Array A

Mapping Data on Block RAM

41

36-bit

Depth
1024

● For array A

○ Width = 18-bit

○ Depth = 512Array A

18-bit

Mapping Data on Block RAM

42

● For array A

○ Width = 72-bit

○ Depth = 512

● Combine two BRAMs

to obtain higher

width.

36-bit

Depth
1024

Array A Array A

36-bit

Mapping Data on Block RAM, using Array Partitioning

43

● For array A[512][2]

○ Data type = ap_int<18>

○ Total width = 36-bit

○ Depth = 512

● Using Array Partitioning

● Cost #BRAM = 2

36-bit

Depth
1024

36-bit

Array A

18-bit

Array A

18-bit

Mapping Data on Block RAM, using Array Reshape

44

● For array A[512][2]

○ Data type = ap_int<18>

○ Total width = 36-bit

○ Depth = 512

● Using Array Reshape

● Cost #BRAM = 1

36-bit

Depth
1024

Array A

18-bit

Array A

18-bit

Advantage of Partitioning over Reshape

45

Partitioning Reshape

Partitioning is more flexible than Reshape,
● Allow to access to different addresses concurrently

