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Background
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Background
● Applications

○ Signal restoration

■ Reduce the high frequent noise

○ Signal separation

■ Isolate input signal into different parts

● Digital filters
○ Infinite Impulse Filter(IIR)

■ Advantage: lower computational complexity; disadvantage: unstable

○ Finite Impulse Filter(FIR)

■ Advantage: stable; disadvantage: higher computational complexity

○ Refer to this video for more theoretical details

● We investigate the methods to speedup FIR algorithm
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https://www.youtube.com/watch?v=CyOYxcsAUWQ


Background
● Definition

○ FIR algorithm, can be computed through the process of 1-D convolution.

○ N-tap FIR

○ Example: 4-tap FIR

     is constant vector over time
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Background
● Real-world example

○ Signal separation via FIR, 

○ Python implementation, Github.

○ Input: 

■ Audio(wav): data type=int16, 44100 samples/sec.

■ Filter: 

● Symmetry 

● Value can be changed for different environments

● Tap size = 461 entries (461-Tap FIR)

○ Architecture: 

■ Two low-pass filter, two high pass filter

■ Final output is the average of four FIR outputs
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https://github.com/inodir/Signal-Separation-via-Finite-Impulse-Response


Base FIR Design
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Functionally Correct Implementation

Streaming function, fir

● Receive/output on sample at a time

○ “x” is the input port

○ “y” is the output port

● Function is called multiple time

● Input/output data type: 
16-bit, 8-bit, integer, fixed-point etc.
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Components in the function

● “coef_c”, hard coded coefficient array 

● “shift_reg”, cache for previous samples, 

○ Streaming function receives only one 
sample at a time

○ But we need N=11 consecutive samples 
to output a result

○ static, since data must be persistent 
across multiple function calls

■ Initial value = 0

Functionally Correct Implementation
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Functionally Correct Implementation
Components in the function

● “acc”, accumulator for multiple multiplications

○ To prevent numerical overflow

○ e.g. (int8+int8) need 9-bit integer to store 
the value for correctness

○ Reset to “0” while each function call.
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Functionally Correct Implementation
Shift_Accum_Loop: each iteration

● Multiply one sample with one coefficient 

○ N=11 iterations

● “acc” stores the running sum

○ How many bits for “acc” is needed?

○ Depends on the input data and application 
requirements.

● Shift values in “shift_reg”, as FIFO

○ shift_reg[i+1]=shift_reg[i]

11



Functionally Correct Implementation

● One multiplier

● N iterations to complete an output

● 4 cycles for each iteration

○ 2 cycles for parallel data read

■ 2 for read coefficient from “tabs[]”

■ 1 for read input

○ 1 for mul, 1 for add 12



Performance Estimation
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Performance of Baseline and Challenges

● How long is the latency for obtaining an output y?
○ 4 cycles for each iteration

○ To output a result, need N iteration

○ Suppose one clock cycle takes 10 ns

○ If N = 461, it takes 4*461*10 = 209920 ns = 20us to obtain an output

● For an input audio sampling rate = 44100 samples/sec.
○ (1/44100) * 10^6 = 22.67 us 

○ New sample will come in system in every 22.67 us

● Processing latency = 20 us, is really closed to sampling period = 22.67 us

● Practically, we wish processing latency is as less as possible.
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Performance of Baseline and Challenges

● Suppose we use Ns DSP to process Ns multiplications parallelly

○ For the case N = 512 and data type = int16

○ It may take 4 cycles to obtain an output, it’s 512x speedup.

○ However, one 16-bit*16-bit multiplication needs one DSP,

○ 512 multiplications need 512 DSP, which exceeds 280, the DSP limit on PYNQ-Z2

● How about parallely perform Ms multiplication?

○ M is a proper divisor of N

○ Then how much speedup can we achieve?
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Design Optimizations
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To increase parallelism
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● Loop Unrolling

○ Multiple copies of processing elements for higher throughput

● Loop Pipelining

○ Parallel executions of multiple stages

○ Possibly multiple tasks run concurrently

● Avoid if/else branch condition in regular loop



Loop Unrolling
● By default, Vivado HLS synthesize the “for” loop in a sequential manner.
● Advantage: area efficient architecture
● Disadvantage: ignore possible parallelism across loop iterations
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Loop Unrolling

● Replicate the loop body by some number(factor) of the line.
● Two methods, automatically and  manually
● Example: unroll factor = 5
● Ideally, every copies are executed parallely.

// manually
for(int i = 0; i < 2; i++){

…
Loop Body Copy 1
Loop Body Copy 2
Loop Body Copy 3
Loop Body Copy 4
Loop Body Copy 5
…

}

// automatically
for(int i = 0; i < 10; i++){
#pragma HLS UNROLL factor = 5

…
Loop Body
...

}

Equivalent

Note: complete unroll without specifying the factor
          i.e. N=10 parallel copy executions. 19



Loop Unrolling

● Ideally, every copies are executed parallely…
● Some exceptions…

○ Limited by the shared resources across different copies.
○ Example:

data_t shift_reg[N];
...
for(int i = 0; i < 2; i++){

…
Loop Body Copy 1
Loop Body Copy 2
Loop Body Copy 3
Loop Body Copy 4
Loop Body Copy 5
…

}

● Simultaneous 5 reads to “shift_reg”

● Usually large array, e.g. “shift_reg” is implemented by 
BRAM

● BRAM has two read ports and one write port

○ Support 2 reads or 1 read 1 write in a cycle

● Only 2 copies can run simultaneously at most.

Memory Hierarchy Recall

20



Loop Unrolling Schedule 
Viewer

If “shift_reg” is RAM_2P_BRAM 
implemented

At most 2 data read on “shift_reg”

● Data Hungry 
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Array Partition
● Separate the memory into several partitions

○ To support higher parallelism
● Example, Suppose a single port memory:

○ Only one read or write in a cycle

0

1

2

...

9

10

Before Partitioning

● Single port constraint

● Read to 1 and 
Read to 2 are serialized

0

2

4

6

8

10

1

3

5

7

9

After Partitioning

●  Still single port 
constraint for each

● Read to 1 and 
Read to 2 can be 
parallelized
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Array Partition

● Implementation in HLS

○ variable(required): array to be partitioned
○ factor(optional): how many partitions are there
○ PARTITION_TYPE: cyclic, block, complete

data_t shift_reg[N];
#pragma HLS ARRAY_PARTITION variable=shift_reg factor=K <PARTITION_TYPE> 

Before 
Partition

Cyclic
Partition 

Block
Partition 23



Array Partition

● Implementation in HLS

Schedule Viewer

● Parallelize 4 reads to “shift_reg”

○ E.g. Read 0, 1, 2, 3 concurrently

● Therefore partition type is cyclic
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Loop Pipelining

● By default, Vivado HLS synthesize the “for” loop in a sequential manner.
○ Second iteration happen only when all statements in first iteration are complete.

● It is possible to perform different statements from different iterations in parallel.
○ e.g. at T1, iteration 1 is executing S2, while iteration 2 is executing S1

○ After pipelining, iteration 1 and iteration 2 is executed parallelly.

T0 T1 T2 T3 T4 T5

S1

S2

S3

Iteration 1 Iteration 2

T0 T1 T2 T3

S1

S2

S3

Loop 
Pipelining
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Loop Pipelining

● Initiation Interval (II)
○ # of clock cycles until the next iteration of the loop can start

II = 3 II = 2 II = 1
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Loop Pipelining

● Calculating # of clock cycles that a “for” loop takes (loop latency)
○ Sequentially

■ (# of clock cycles for an iteration) * (# of iterations)

○ Pipelined

■ (# of clock cycles for an iteration) + (Initiate Interval)*(# of iterations - 1)

Latency = 3*2 = 6 Latency = 3+(2*1) = 5 Latency = 3+(1*1) = 4
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Loop Pipelining

● Implementation in HLS
○ Speedup 2x in this example

Before pipelining 
conditional branch

After pipelining 
conditional branch

N = 256, clock period = 10 ns 28



Avoid branching condition in the loop

● if/else statements(control structure) in the loop
○ Statements can only be executed after the condition statement is resolved

● For regular or predictable loop, we can have more refactoring opportunities

Before removing 
conditional branch

After removing 
conditional branch

Here, N = 256 29



Labs
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Lab 3-1: Practice with small filter size N=11

● Prepare lab files
○ Download the files from here.

○ Four files in the package, 

■ (1) fir.c: design implementation.

■ (2) fir.h: header file, define data types, functions

■ (3) fir_test.c: compare results from hardware and software

■ (4) out.gold.dat: golden data

● Column 1: sample index

● Column 2: input sample value

● Column 3: output of FIR
31

https://drive.google.com/file/d/1llWkc0YeDUHEkZh38nQSHPKu3pu1De57/view?usp=sharing


Lab 3-1: Practice with small filter size N=11

● Open Vivado HLS 2020.1 
● Create New Project

○ Add the downloaded files into project

1. Add Files...: 
○ Select “fir.c” and “fir.h”

2. Specify top function
○ Browse and select “fir”

3. Add Files...: 
        Select “fir_test.c”
        and “out.gold.dat”
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Lab 3-1: Practice with small filter size N=11

● C-Simulation and C Synthesis

○ On the toolbar, click Toolbar

Schedule ViewerSynthesis Report

Analysis Tab
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Lab 3-1: Practice with small filter size N=11

● Try the optimization techniques learned today
○ Loop Unrolling
○ Loop Pipelining
○ Avoid branch condition

● Try to read the synthesis report and schedule viewer
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Lab 3-2: Performance tuning for larger filter size N=512.

● Change N = 512 in the header file
○ 512-tap FIR filter
○ Ignore C-simulation check with testbench, we don’t have the data yet.

● To get today’s full credit, try your best to suppress my result.
○ Lower latency
○ Reasonable resource consumption

● Hints:
○ Apply all the optimization techniques we learned today
○ Relation: 

Behavior “Shift” on “shift_reg” → array partition
○ Look into “Schedule Reviewer” to check the

schedule is exactly matched with your thoughts
○ *Considering “symmetry” property of filter(optional)
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Summary

● Understanding the algorithm, application workload

○ Then we can design good accelerator.

● Optimization Techniques

○ Loop Unrolling, Loop Pipelining, Avoid branch condition

● When considering parallelization, don’t forget the memory bandwidth support.

● Next time

○ Introduction to the interfaces(AXI streaming), so that we can port the design on PYNQ-z2

36



Appendix: Array Reshape v.s. Array Partition
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Array Reshape
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Increase bandwidth, similar to Array Partitioning
And has higher BRAM utilization



Block RAM in FPGA
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Mapping Data on Block RAM
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36-bit

Depth
1024

● For array A

○ Width = 36-bit

○ Depth = 512Array A



Mapping Data on Block RAM
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36-bit

Depth
1024

● For array A

○ Width = 18-bit

○ Depth = 512Array A

18-bit



Mapping Data on Block RAM
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● For array A

○ Width = 72-bit

○ Depth = 512

● Combine two BRAMs 

to obtain higher 

width.

36-bit

Depth
1024

Array A Array A

36-bit



Mapping Data on Block RAM, using Array Partitioning
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● For array A[512][2]

○ Data type = ap_int<18>

○ Total width = 36-bit

○ Depth = 512

● Using Array Partitioning

● Cost #BRAM = 2

36-bit

Depth
1024

36-bit

Array A

18-bit

Array A

18-bit



Mapping Data on Block RAM, using Array Reshape
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● For array A[512][2]

○ Data type = ap_int<18>

○ Total width = 36-bit

○ Depth = 512

● Using Array Reshape

● Cost #BRAM = 1

36-bit

Depth
1024

Array A

18-bit

Array A

18-bit



Advantage of Partitioning over Reshape
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Partitioning Reshape

Partitioning is more flexible than Reshape,
● Allow to access to different addresses concurrently  


