
DPU on PYNQ-Z2 (1)
Vivado Project



Outline

• DPU Introduce

• Vivado project Build



• The Xilinx® Deep Learning Processing Unit (DPU) is 
a configurable computation engine optimized for 
convolutional neural networks. 

• It includes a set of highly optimized instructions, 
and supports most convolutional neural networks, 
such as VGG, ResNet, GoogLeNet, YOLO, SSD, 
MobileNet, FPN, and others.

• The DPU requires instructions to implement a 
neural network and accessible memory locations 
for input images as well as temporary and output 
data. A program running on the application 
processing unit (APU) is also required to service 
interrupts and coordinate data transfers.

Product Guide: PG338

DPU Introduction

DPU Top-Level Block Diagram

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


• The DPU has the following features:
• One AXI slave interface for accessing configuration and status registers.
• One AXI master interface for accessing instructions.
• Supports configurable AXI master interface with 64 or 128 bits for accessing data depending on the 

target device.
• Some highlights of DPU functionality include:

• Configurable hardware architecture core includes: B512, B800, B1024, B1152, B1600, B2304, B3136, and B4096
• Maximum of three homogeneous cores
• Convolution and deconvolution
• Depthwise convolution
• Max pooling
• Average pooling
• ReLU, ReLU6, and Leaky ReLU
• Concat
• Elementwise-Sum
• Dilation
• Reorg
• Fully connected layer
• Softmax (Not Support at Zynq-7000)
• Batch Normalization
• Split

Product Guide: PG338

DPU Introduction

DPU IO ports

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Product Guide: PG338

DPU Introduction

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Product Guide: PG338

DPU Introduction

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


• DSP Double Data Rate (DDR) technique is used to improve the performance achieved with 
the device. 

• Therefore, two input clocks for the DPU are needed, one for general logic, and the other 
for DSP slices. 

Product Guide: PG338

DPU Introduction- DPU with Enhanced Usage of DSP

Difference between DPU without DSP DDR and DPU Enhanced Usage

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Product Guide: PG338

DPU Introduction-DPU Convolution Architecture

In each clock cycle, the convolution array performs a multiplication and an 
accumulation, which are counted as two operations. 
Thus, the peak number of operations per cycle is equal to PP*ICP*OCP*2.

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Product Guide: PG338

DPU Introduction-RAM Usage

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Product Guide: PG338

DPU Introduction-Channel Augmentation

• Channel augmentation is an 
optional feature for improving the 
efficiency of the DPU when 
handling input channels much 
lower than the available channel 
parallelism.

• When the number of input 
channels is larger than the channel 
parallelism, then enabling channel 
augmentation will not make a 
difference

• In summary, the channel 
augmentation can improve the 
total efficiency for most CNNs, but 
it will cost extra logic resources.

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Product Guide: PG338

DPU Introduction- DSP Usage

• This allows you to select whether 
DSP48E slices will be used for 
accumulation in the DPU 
convolution module. 

• In low DSP usage mode, the DPU IP 
will use DSP slices only for 
multiplication in the convolution.

• In high DSP usage mode, the DSP 
slice will be used for both 
multiplication and accumulation.

• Thus, the high DSP usage 
consumes more DSP slices and less 
LUTs

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Product Guide: PG338

DPU Introduction- DPU Development Flow

• The DPU requires a device driver which is included in the Xilinx Deep Neural Network 
Development Kit (DNNDK) toolchain. 

• Vivado to generate the bitstream. Then, download the bitstream to the target board and 
install the DPU driver.

DNNDK User Guide (UG1327)
Basic Development Flow

Petalinux
Boot bin

DNNDK (edge)

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ai_inference/v1_6/ug1327-dnndk-user-guide.pdf


Product Guide: PG338

DPU Introduction- Example System with DPU

Example System with DPU

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf


Vivado Project Build



Open vivado and create new project

1.Click create project

2.Click next



Change project name and directory

1.Setup project name and directory

2.Click next



Select RTL project and next

1.Select RTL Project and check Do not specify source at this time 

2.Click Next



Select pynq-z2 Board File

1.Click boards

2.Select pynq-z2

3.click next



Project Summary should be look like this



Add DPU IP repository

1.Click settings

4.Select 
zcu102-dpu-trd-2019-1-
timer\pl\srcs\dpu_ip

5.

zcu102-dpu-trd-2019-1-timer Download link

2. Select IP/Repository

3. Click to select 
DPU IP path

https://drive.google.com/file/d/1-Ajpk6HIDHIkwDHdUJaB92HN5g_S0Bam/view?usp=sharing


Creat Block design

pynqz2_dpu



Add Zynq processor and click Run Block Automation



Configure processing_system7_0

Double click



Configure processing_system7_0

PS-PL configuration -> HP Slave AXI Interface 
-> S AXI HP0~HP2
Change S AXI HP2 Data WIDTH 64 -> 32

Interrupts-> Fabric Interrupts -> IRQ_F2P[15:0]

Click Ok and ignore warnings.



It should look like this



Add DPU IP

1.Search for DPU IP and 
add it into design 

2.Double click on DPU IP 
3.Configue the DPU IP by 
changing Arch to B1152 
and click OK. 



Connect DPU with PS

DPU0_M_AXI_DATA0 -> S_AXI_HP0
DPU0_M_AXI_DATA1 -> S_AXI_HP1
DPU0_M_AXI_INSTR -> S_AXI_HP2
(DPU) S_AXI -> M_AXI_GP0
dpu_interrupt -> (concat) in0, (concat)dout -> (PS) IRQ_F2P



Add other require IP

1.Add Clocking Wizard

2.Add Processor System Reset

3. Change IP name



Configure clocking wizard

1.Double Click

2.Select Output 
Clocks

3.Congfigure clk_out 4.Scroll Down and 
Change Reset type 
to active Low

5. Click OK



Connect clock



Connect reset



Connect lock



Connect Clock_150Mhz



Connect Clock_300Mhz



Connect dpu aresetn (Active-low reset)

1.

2.

3.



Final Layout



Assign address

1.Switch to Address editor

2.Click Assign all

3.Change dpu_eu_0 Address to 
0x4F00_0000
And make sure address is 
0x4F00_0000 ~ 0x4FFF_FFFF



Validate Design

Click Validate Design

Should Be successful



Create HDL Wrapper

1.Switch to source
2.Right Click at 
design_1(design_1.bd) and 
click Create HDL Wrapper

3.Click OK



Generate Bitstream

1. Click Generate Bitstream

2. Click Yes

3. Click OK



Wait for it

Wait for it



Finish

Click cancel when finished 
generate Bitstream



Export Hardware 

1.Click Export Hardware

2.click next



Export Hardware 

1.Select include bitstream

2.Change XSA File name



Click Finish



Done!

Save pynqz2_dpu.xsa


