
Prefix Sum and Histogram
Speaker: Jia-Ming Lin



Outline

● Prefix Sum and its Applications

● Histogram

● Histogram Optimization



Prefix Sum

● Cumulative sum of sequence of numbers

Given

Prefix Sum

Output



Prefix Sum

● Example



Recurrence equation

● Without recompute sum of all of previous inputs

● HLS implementation

Stored in memory

R In

R Out

+

W Out

Task Interval = 2

Read + Write 
needs two cycles



Recurrence equation

● To achieve Pipeline II=1, 

○ Access to BRAM takes too long to achieve.

○ One solution is reducing the # of accesses to BRAM

● HLS implementation,

R In

+A

W Out

Task Interval = 1

One read on out[] is removed



Optimization: Pipeline and Unroll

In_0 In_1 In_2 In_3

Out0 Out1 Out2 Out3

See Timeline Analysis 
from Vivado HLS



Histogram



Baseline
● Given data

● Output histogram values

● Sequentially processing on the 
input data



Optimization: Pipeline and Dependencies

● Issue while using Pipeline

● Read Hist[] dependence on Write Host[]

○ They can not be executed simultaneously.

○ So, Task Interval >= 2 in this case.

○ We call this Read after Write(RAW) Dependency



● Example: RAW dependency

Optimization: Pipeline and Dependencies

2 5 3 4 2 2 3 5 3 5 1 2 4 2

1 1 1 1 0

1 2 3 4 5

In

Hist T1 T2 T3 T4 T5 T6

Read In[] 2

Read Hist[] 1

Add 2

Write Hist[] 2



● Example: RAW dependency

Optimization: Pipeline and Dependencies

2 5 3 4 2 2 3 5 3 5 1 2 4 2

1 1 1 1 0

1 2 3 4 5

In

Hist T1 T2 T3 T4 T5 T6

Read In[] 2 2

Read Hist[] 1 1

Add 2 2

Write Hist[] 2 2

Pipeline, Task Interval = 1



● Observation: When no two consecutive data are with same value

○ II = 1 is ok

Optimization: Pipeline and Dependencies

2 5 3 4 2 4 3 5 3 5 1 2 4 2

1 1 1 1 0

1 2 3 4 5

In

Hist T1 T2 T3 T4 T5 T6

Read In[] 2 4

Read Hist[] 1 1

Add 2 2

Write Hist[] 2 2

Pipeline, Task Interval = 1



● Observation: When no two consecutive data are with same value

○ II = 1 is ok

○ In HLS, using pragma to specify dependency is false for “hist[]”

Optimization: Pipeline and Dependencies



● What about general case? Is Pipeline II=1 possible?

○ Yes, by using register to reduce the # of accesses to “hist[]”

Optimization: Pipeline and Dependencies

2 5 3 2 2 2 3 5 3 5 1 2 4 2

1 1 1 1 0

1 2 3 4 5

In

Hist T1 T2 T3 T4 T5 T6

Read In[] 2 2

Compare True True

reg+=1 3 4

Pipeline, Task Interval = 1



● What about general case? Is Pipeline II=1 possible?

○ For consecutive data with different values, waiting on write hist[] is not needed.

Optimization: Pipeline and Dependencies

2 5 3 2 2 2 3 5 3 5 1 2 4 2

1 1 1 1 0

1 2 3 4 5

In

Hist T1 T2 T3 T4 T5 T6

Read In[] 2 3

Compare True Fasle

Read hist[] hist[3]

Write hist[] hist[2]=4

Pipeline, Task Interval = 1

Intra-Iteration, dependency = false



● What about general case? Is Pipeline II=1 possible?

○ Yes, using register to reduce the # of BRAM accesses

○ For consecutive values, adding count on register

■ Otherwise, refer to non-consecutive case

Optimization: Pipeline and Dependencies
Note that

● This optimization 
only works for ZYNQ 
Ultrascale+ FPGA

● Timing constraint 
missed for ZYNQ 
7000



Optimization: More Parallelism by using MapReduce

● Partitioning the input and parallelly processing on each part

● Then merge the results from each partition.

5 3 5 1 2 4 22 5 3 2 2 2 3

0 4 2 0 1

1 2 3 4 5

Hist_0 1 2 1 1 2

1 2 3 4 5

Hist_1

1 6 3 1 3

1 2 3 4 5

Output


