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Machine Learnin

0Q

Classical
Data —| Programming

— Answers

Data —» :
Machine Rules

Answers —» learning

Francois Chollet, “Deep Learning with Python,” Manning, 2017



Machine Learning Flow

(W= (P EHEE) (& AY)

Data Evaluation Training
(Loss Function) (Optimization)
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Machine Learning
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scikit-learn
algorithm cheat-sheet

classification

get
more
data NO
YES samples
iy
category
YES

predicting &
YES
m NO

prediceing

NO

(e
samples

regression

YES

NO,
100K s g
important

‘number of
YES categories
known

clustering T
samples

NOT
WORKING INE
o1
WORKING

dimensionality
reduction




scikit-learn.org
O learn

Classification

Identifying to which category an object
belongs to.
Applications: Spam detection, Image

recognition.
Algorithms: SV, nearest neighbors,

random forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.
Applications: Visualization, Increased

efficiancy
Algorithms: PCA, feature selection, non-

negative matrix factorization. — Examples

soogle Custom Search

scikit-learn

Machine Leamning in Python

Regression

Predicting a continuous-valued attribute
associated with an object.

Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso,
— Examples

Model selection

Comparing, validating and choosing
parameters and models.
Goal: Improved accuracy via parameter

tuning
Modules: grid search, cross validation,

metrics. — Examples

Clustering

Automatic grouping of similar objects into
sats.

Applications: Customer segmentation,
Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,
mean-shift, ... — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as

text for use with machine lzarning algorithms.

Modules: preprocessing, feature extraction.
— Examples



Types of Data



Data Types (Measurement Scales)

(Discrete)

Categorical

PN

Nominal

https://towardsdatascience.com/data-types-in-statistics-347e152e8bee

Ordinal

Numerical

Interval

(Continuous)

Ratio

10


https://towardsdatascience.com/data-types-in-statistics-347e152e8bee

Nominal Data (Labels)

* Nominal data are labeling variables without any quantitative value
* Encoded by one-hot encoding for machine learning

* Examples:

What is your Gender? What languages do you speak?

O Female O Englisch
O Male () French
O German

O Spanish

11



Ordinal Data

* Ordinal values represent discrete and ordered units
* The order is meaningful and important

What Is Your Educational Background?
O 1 - Elementary

(O 2-High School

O 3 - Undegraduate

O 4 - Graduate

12



Interval Data

* Interval values represent ordered units that have the same difference
* Problem of Interval: Don’t have a true zero
* Example: Temperature Celsius (°C) vs. Fahrenheit (°F)

Temperature?
O -10

O

O o

O +5

O +10

O +15

13



Ratio Data

* Same as interval data but have absolute zero
e Can be applied to both descriptive and inferential statistics
* Example: weight & height

14



Machine Learning vs. Statistics

* https://www.r-bloggers.com/whats-the-difference-between-
machine-learning-statistics-and-data-mining/

Machine learning Statistics
network, graphs “'nodel
weights fparameters
learning ﬁttmg
generalization test set performance
supervised learning Eregression/dassiﬁcation
unsupervised learning édenslly estimation, clustering
large grant = $1,000,000 ?Iarge grant = $50,000

!

nice place to have a meeting: ‘nice place to have a meeting:
Snowbird, Utah, French Alps ‘Las Vegas in August



https://www.r-bloggers.com/whats-the-difference-between-machine-learning-statistics-and-data-mining/

Supervised and Unsupervised Learning

Supervised
Learning

Unsupervised

Learning

4 ) 4 )

Regression Clustering

\- J - J

C ) 4 N\

Dimension
Reduction

(S J \- J

Classification




Iris Flower Classification (R AL4574E)

Iris Versicolor Iris Setosa Iris Virginica

17



Extracting Features of Iris (i EVEFHZE)

« Width and Length of Petal ({E¥[¥) and Sepal ({EE2)

18



Iris Flower Dataset

Sepal Sepal Petal Petal

length width length  width

Setosa

4.9 3.0 1.4 0.2 Setosa

) | 6.4 3.5 4.5 1.2 Versicolor A

0 | 5.9 3.0 5.0 1.8 Virginica

/ Class labels

(targets)

Jebaseelan Ravi @ Medium

2atures

Hrihiitee meaciiremente dimencinnc)



https://medium.com/@jebaseelanravi96/machine-learning-iris-classification-33aa18a4a983

Classity Iris Species via Petals and Sepals

* Iris versicolor and virginica
are not linearly separable 6.5 -

Sepal length
o
i3

1 : 1 1 1 1
2 3 4 5 B
Petal lengdth

https://www.tensorflow.org/tutorials/customization/custom training walkthrough

20


https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough

Linear Classifier

e\

75
wm,-ew;xz-b——o %y .
/ " ]
rw, wtj[x]vb;o o :
2 Ean .
WTx =b=0
\,\ﬂ ¢ —/B < 0 §_{th& o %
\fersicolor 457 Ny
W' X =b >0 . ' ' - - -
V?ff)m'c‘ ; ’ Peta|;;th : -

21



Evaluation (Loss Function)

Y'=WTx-b<0

s=4-
Leorn m\j Rule (P{fcey(;ron)
W< W+aly-Y')X




Support Vector Machine (SVM)

* Choose the hyperplanes that have the largest separation (margin)

23



Loss Function of SVM

 Calculate prediction errors

K(jxk—-WT/‘ b I
Y= WX - b 2=

y;(\/\/TX,;'-—b)Z | |
Loss :VW@, [ Y (W -b))
HTr\ge Loss




SVM Optimization

* Maximize the margin while reduce hinge loss
* Hinge loss: max (0,1 — y; (w - ; — b)) ToA

min. 1w |
s.bt. mex (o, [-y(wW-b))




Nonlinear Problem?

* How to separate Versicolor and Virginica?

\

75
7.0 1 L
L
L
6.5
=
=)
T 60 .
v 9.5 1 .8
5.0 '*
l"l-
[ ]
45 *

1 1 1
2 3 \;f
Petal lergth



SVM Kernel Trick

* Project data into higher dimension and calculate the inner products

Input Space Feature Space

https://datascience.stackexchange.com/questions/17536/kernel-trick-explanation 27



https://datascience.stackexchange.com/questions/17536/kernel-trick-explanation

Nonlinear SVM for Iris Classification

SVC with linear kernel LinearSVC (linear kernel)

i - L
= g
= =
© ™
o o
1} 1}
u o un
Sepal length Sepal length
SVC with RBF kernel SVC with polynomial (degree 3) kernel
= | =
= o
= =
™ ™
o o
o o
un un

Q

Sepal length Sepal length

28



Using Neural Network

SepallLength

SepalWidth

PetalLength

PetalWidth

Input Layer

Y53

Hidden Layers

\ KA/

Probability of this type of Iris

l l

0.02 Setosa

©.95 Versicolor

0.03 Virginica

Output Layer

https://www.tensorflow.org/tutorials/customization/custom training walkthrough 29



https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough

Supervised and Unsupervised Learning

Supervised
Learning

Unsupervised

Learning

4 ) 4 N

Regression Clustering

(S J \- J
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Linear Regression (Least squares)

* Find a "line of best fit” that minimizes the total of the square of the

errors
10|V /)
U =wxK b
n
. error YV\T’\- Z (ykf yi/)Z_
" X
) 5 10

31



Supervised and Unsupervised Learning

Supervised
Learning

Unsupervised

Learning

4 ) 4 )

Regression Clustering

\- J - J

C ) 4 N\

Dimension
Reduction

(S J \- J

Classification




Logistic Regression

 Sigmoid function

 Derivative of Sigmoid

S(x) =S(x)(1-S(x))

S-shaped curve

1- P
/
B2+
1 | 0 | | |
— B —4 —2 0 2 4 5

https://en.wikipedia.org/wiki/Sigmoid_function

33



Decision Boundary

* Binary classification with decision boundary t

1
y' = P(x,w) = Py(x) =

1+ e 0rath)

, 0, x <t
x =t

34



Cross Entropy Loss ~—£173P0<)

* Loss

loss= A«

Binary cross entropy loss for target = 0

—— RBinary crass antropy lass

- l
function: cross entropy |, o —
J P

—lnf@f\h/\ﬂ‘tl-on_

(—log(1 - Pg(x)), if y =0 = e

- log(Pg(x)), if y=1 | S

—— Binary cross =ntropy loss
II
q ) |
@
@
2
zi-
2

Pradictions igiven target = 1}

https://towardsdatascience.com/a-guide-to-neural-network-loss-functions-with-applications-in-keras-3a3baa9f71c5

35



https://towardsdatascience.com/a-guide-to-neural-network-loss-functions-with-applications-in-keras-3a3baa9f71c5

Cross Entropy Loss

* Loss function: cross entropy

(— log(1—Pg(x)), if y=0

loss= ; ,
| —log(Pg(x)), if y =1

= Lg(x) = —ylog(Py(x)) + — \(/1—M}/7210g(1 — Pg(x))

Vg (x) = —(y — Po(x))x

https://towardsdatascience.com/a-guide-to-neural-network-loss-functions-with-applications-in-keras-3a3baa9f71c5

36


https://towardsdatascience.com/a-guide-to-neural-network-loss-functions-with-applications-in-keras-3a3baa9f71c5

Machine Learning Workflow

g::snegt 2b T \Vh I’\'/:e#’QV‘CQ
ro r‘j

[ Prediction ]

Training

Dataset Algc:‘f"nthm Eval}‘J‘atlon

oD

Production
Data

https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94 37 oq:



https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

Overfitting and Underfitting

Overfitting Underfitting

15

https://en.wikipedia.org/wiki/Overfitting

38


https://en.wikipedia.org/wiki/Overfitting

Overfitting (DR HEE)

e Overfitting is common, especially for neural networks

39



40

ing Tanks

Detect

Neural Network Urban Legend
* Detector learned the illumination of photos




Bias and Variance Trade-off

Low Variance High Variance
* Model with high variance overfits
to training data and does not .
generalize on unseen test data @
§
a

http://scott.fortmann-roe.com/docs/BiasVariance.html a1



http://scott.fortmann-roe.com/docs/BiasVariance.html

Model Selection

Error

Optimum Model Complexily

&

Variance

Model Complexity

42



Training, Validation, Testing

 Never leak test data information into our model

* Tuning the hyperparameters of our model on validation dataset

Total available labeled data

A
p
Held-out
Training set validation
set
L AN
h'd '
Train on this Evaluate

on this

43



K-Fold Cross Validation

* Lower the variance of validation set

Fold 1 {
Fold 2 {
Fold 3 {

Data split into 3 partitions

A

Validation Training Training
Validation Validation Training
Validation Training Validation

Validation h

score #1

Validation
score #2

Validation
score #3

>' Final score:
average

-

44



Regularization

* https://developers.google.com/machine-learning/crash-

course/regularization-for-sparsity/l1-regularization

O I ghach 500 of 500

No Regularization 0.01 0.37 0.39 0.05 0.26 0.75 -1.84 1.64

L, Regularization 0 0.31 0 0 1.56 125 1.59 1.42

L, Regularization 0.01 0.37 0.41 0.06 0.24 078 158 1.46

45


https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/l1-regularization

Metrics:

Accuracy vs. Precisl
iIn Binary Classification

N




Confusion Matrix

True condition
Total - . " _
_ Condition positive Condition negative
population
Predicted o o
. True positive, False positive,
condition
. Power Type | error
Predicted = posilive
condition  predicted
" False negative, _
condition True negative
_ Type Il error
negative

https://en.wikipedia.org/wiki/Confusion

matrix

47



https://en.wikipedia.org/wiki/Confusion_matrix

Confusion Matrix

https://en.wikipedia.org/wiki/Confusion matrix

True condition

Total " N
, Condition positive
population
Predicted
condition True positive
Predicted Positive
condition = pPredicted
- False negative,
condition
_ Type Il error
negative

True positive rate (TPR), Recall,

Sensitivity, probability of detection,

2 True positive
2 Condition positive

Power =

False negative rate (FNR), Miss rate

— _ 2 False negative
2 Condition positive

Prevalence

— 2 Condition positive
2 Total population

Condition negative

Positive predictive value (PPV),

False positive, .
P Precision =

__ 2 True positive
Predicted condition positive

Type | error

False omission rate (FOR) =

2 False negative
Z Predicted condition negative

True negative

False positive rate (FPR),

Fall-out, probability of false alarm
— _ 2 False positive
2 Condition negative
Specificity (SPC), Selectivity, True

negative rate (TNR)

__2 True negative
2 Condition negative

Positive likelihood ratio (LR+)

_ TPR
FPR

MNegative likelihood ratio (LR-)

_ FNR
TNR

Accuracy (ACC) =

2 True positive + & True negative
2 Total population

False discovery rate (FDR) =

2 False positive
2 Predicted condition positive

Negative predictive value (NPV) =

2 True neqative
z Predicted condition negative

Diagnostic

F. score =
odds ratio 1 -
LR+ o . Precision - Recall
(DOR) = R Precision + Recall

48


https://en.wikipedia.org/wiki/Confusion_matrix

Popular Metrics

* Notations
—P: positive samples, N: negative samples, P’: predicted
positive samples, TP: true positives, TN: true negatives

TP
e Recall = ?

. TP
* Precision = By

/
TP+TN
P+N

2
*F1score=— T

recall precision

* Miss rate = false negative rate = 1 — recall

* Accuracy =

49



Coronavirus Example

* Precision=8/18 =44%
e Accuracy = (8 +90) /110 = 89%

— N 17

BRXAMMERE - R PENRYRGHIRREEIERS

ERIBARFIE80% !

HENER BE
R 8 10 18
IREtE 2 90 92

10 100

C mMEEELS + RREHEE

TR (false alarm) [ %2 (miss})

https://www.facebook.com/numeracylab/p



https://www.facebook.com/numeracylab/posts/2997362376951435

Accuracy

* Example: Classifying tumors as malignant or benign (Google Machine

Learning Crash Course )

TP+TN 1+ 90

=091

A _ _
Y = T P Y TN+ FP+FN  1+90+1+8

https://developers.google.com/machine-learning/crash-course/classification/accuracy

51


https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy

Precision and Recall

* Classifying tumors as malignant or benign

True Positives (TPs): 1 False Positives (FPs): 1 True Positives (TPs): 1 False Positives (FPs): 1
False Negatives (FNs): 8 True Negatives (TNs): 90 False Negatives (FNs): 8 True Negatives (TNs): 90
TP 1 TP 1
Precision = 0.5 Recall = =0.11

TP+FP 1+1 TP+ FN 1+8

Classification
Threshold

|

|

|
200 0C0O0OOCOOODOIEOIOOOGOODOPOCONOOPOOSGPOODOOODOO .ﬂcmall}-’m}tspmn
INTNTNINININ TN INTN IN TN TN TN TN TNFN TNEN TNFN'EP TP FP TP TP TP TP TP TP TP

i

| - o o | © Actually spam

0.0 Output of Logistic Regression model 1.0

https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall 52



https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall

ROC Curve

* ROC (Receiver Operating Characteristic) Curve

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows

TF

TPR= ————
TP+ FN

False Positive Rate (FPR) is defined as follows:

FP

FPR= —————— - - —

FP+ TN -

# .f_. 1] “

/ d TP +s. FP rate af

’ one decision
” thrashold
p Y
”

T Rate

f-—-._ L - S
/ o TP v=. FP rate at
ancther decizion

! | threshold
!

I’

0

0

FP Eate 1

https://bwfinsight.blog/2018/05/10/the-link-between-

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc world-war-ii-and-your-predictive-models/ 53



https://bwfinsight.blog/2018/05/10/the-link-between-world-war-ii-and-your-predictive-models/
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

AUC (Area under the ROC Curve)

* AUC ranges in value from O to 1.
— AUC of 0.0 = predictions are 100% wrong (X)
— AUC of 1.0 = predictions are 100% correct (O)

g
* Advantages E
— Scale-invariant &
— Classification-threshold-invariant
* Not suitable for email spam detection
=

0 FP Rate 1

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc »



https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

True Positive Rate (TPR)

Evaluate Decision Boundary t

* ROC (Receiver Operating

Characteristic) Curve

1.0 1

0.8 4 -

0.6 -~

0.4 e

0.2 - e

0axq -
1 I 1 1 I
0.0 Q.2 D.d 0.8 0.8

False Positive Rate (FPR)

I
1.0

* Precision-Recall (PR) Curve

Precision

1.0 1
0.8 1
0.6 1

€0

0.2 1

Recall




Summary of ML Training Flow

N o U s W NhPeE

Defining the problem and assembling a dataset

Choosing a measure of success

Deciding on an evaluation protocol

Preparing your data

Developing a model that does better than a baseline
Scaling up: developing a model that overfits

Regularizing your model and tuning your hyperparameters

56



Pedro Do
Machine

mingos — Things to Know about

_earning

; 3?”?3’.;
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Useful Things to Know about Machine Learning

It’s generalization that counts

Data alone is not enough

Overfitting has many faces

Intuition fails in high dimensions

Theoretical guarantees are not what they seem
More data beats a cleverer algorithm

N o U A W NheE

Learn many models, not just one

Pedro Domingos, “A Few Useful Things to Know about Machine Learning,” Commun. ACM, 2012

58



It’s Generalization that Counts

* The goal of machine learning is to
examples in the training set

* Don’t use test data for training

e Use cross validation to verify your model

beyond the

59



Data Alone |Is Not Enough

* No free lunch theorem (Wolpert)

—Every learner must embody some knowledge or
assumptions beyond the data

* Learners combine knowledge with data to grow
programs

60



Overfitting Has Many Faces

* Ex: when your model accuracy is 100% on

training data but only 50% on test data, when Low High
in fact it could have 75% on both, it has overfit. Vanance Varlance
» Overfitting has many forms. Example: bias & YN S
. Hich / .,-/ _ \ \ .-f / ~ \\ X\
variance e OO )
* Combat overfitting \\/ / \\//
— Cross validation : :H
— Add regularization term //\\ f{ /X\ b
Low [ | 5 ) ] | a |
NI



ntuition Fails in High Dimensions (Number of
~eatures)

e Curse of Dimensionality

e Algorithms that work fine in low dimensions fail when the input is
high-dimensional

* Generalizing correctly becomes exponentially harder as the
dimensionality of the examples grows

* OQur intuition only comes from 3-dimension

62



Theoretical Guarantees Are Not What They
Seem

* Theoretical bounds are usually very loose

* The main role of theoretical guarantees in machine learning is to help
understand and drive force for algorithm design

63



More Data Beats a Cleverer Algorithm

* Try simplest algorithm first

N. Bayes
kNN

SVM  _

64



Learn Many Models, Not Just One

* Ensembling methods: Random Forest ,XGBoost, Late Fusion
 Combining different models can get better results

Decision Forest

A

( \
/ N ) )
tree T v \ \
S ‘ /L/_/L/L/U

65
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