
Structural Design 
Patterns

Kuan-Ting Lai

2020/4/12

OOP
Class

Abstra
ction

Inheri
-tance

En-
capsu-
lation

Poly-
mor-

phism



Structural Design Patterns

Creational 
Design Patterns

Initialize objects 
or create new 

classes

Structural 
Design Patterns

Compose 
objects to get 
new functions

Behavioral 
Design Patterns

Communication 
between objects



Structural Design Patterns

•Adapter

•Bridge

•Composite

•Decorator

• Façade

• Flyweight

•Proxy





Adapter
Pattern



Adapter

• Adapter works as a bridge between 
two incompatible interfaces

• Object adaptor

• Class adaptor



Inheritance vs. Composition



Object Adaptor

• Client Interface describes a protocol that other classes must follow 

• Adapter is a class that implements the client interface and composite 
a service object 



Class Adaptor

• Inherit from both client and service class



Example: MediaPlayer

https://www.tutorialspoint.com/design_pattern/adapter_pattern.htm

https://www.tutorialspoint.com/design_pattern/adapter_pattern.htm


Bridge Pattern

• Split a large class into two separate hierarchies: abstraction and 
implementation



Bridge Example: Colorful Shapes



Separating Shape and Color

• The Bridge pattern attempts to solve this problem by switching from 
inheritance to composition



Using Composition to Implement New Function



Composite Pattern

• Compose objects into 
a tree structure



Document Structure

• Recursive composition of text and graphics



Composite Pattern



Composite Structure

• Component interface describes
operations that are common to
both simple and complex elements
of the tree

• Leaf is a basic element without
sub-elements

• Container (aka composite) is an
element that has sub-elements



Decorator

• Attach new behaviors to objects by placing these objects



Embellishing the User Interface (Decorator)

• Decorator Pattern: support embellishment by 
transparent enclosure



FACADE



FACADE
• Define a new interface for existing many objects



FLYWEIGHT

• Fit more objects into RAM by sharing common 
parts of state between multiple objects



Example: Game Displaying







Proxy



Proxy Structure

• Lazy initialization

• Access control

• Local execution of a remote 
service

• Logging requests

• Caching results

• Garbage collection



Example: Internet Proxy

https://www.javatpoint.com/proxy-pattern

https://www.javatpoint.com/proxy-pattern


References

• Alexander Shvets, “Dive into Design Patterns,” 2018

• https://www.tutorialspoint.com/design_pattern/index.htm

• https://www.javatpoint.com/design-patterns-in-java

• https://www.startertutorials.com/patterns/select-design-
pattern.html

https://www.tutorialspoint.com/design_pattern/index.htm
https://www.javatpoint.com/design-patterns-in-java
https://www.startertutorials.com/patterns/select-design-pattern.html

