
Behavioral Design
Patterns

Kuan-Ting Lai
2023/4/7

OOPClass

Abstra
ction

Inheri
-tance

En-
capsu-
lation

Poly-
mor-

phism

Behavioral Design Patterns

Creational
Design Patterns

Initialize objects
or create new

classes

Structural
Design Patterns

Compose
objects to get
new functions

Behavioral
Design Patterns

Communication
between objects

Common Behavioral Design Patterns

1. Strategy
2. Observer
3. State
4. Command
5. Template
6. Iterator
7. Chain of Responsibility

Head First Design Patterns
• Freeman, Eric; Robson, Elisabeth; Bates,

Bert; Sierra, Kathy. Head First Design
Patterns. O'Reilly Media.

• Wonderful examples and modern
design patterns

Design a SimUDuck App

• Joe works for a company that makes a
highly successful duck pond simulation
game, SimUDuck.

We want to make ducks FLY!

• Add new features to our game
• Let’s make ducks fly
• Add a function fly() in parent

class Duck

But something went horribly wrong…

• Rubber duckies flying around the screen

What happened?

• Not all ducks can fly, and not all ducks quack

Override?

• Is there a better
way than
inheritance?

• What if we want
to update the
product every
months?

Design new classes for behaviors
• Create new classes for new behaviors
• Add new classes as member variables

In Java, use interface for behaviors

• Java interface == C++ abstract class

Programming to an interface

• Programming to an implementation would be:
Dog d = new Dog();
d.bark();

• But programming to an interface/ supertype would be:
Animal animal = new Dog();
animal.makeSound();

• Even better, we can assign the concrete implementation
object at runtime:

a = getAnimal();
a.makeSound();

FlyBehavior and QuackBehavior

Delegate flying and quacking behavior
• Make flying and quacking behaviors as member variables, and use

performFly() and performQuack to call them.

Inherit the Duck class

Testing the Duck code (1)
• Type and compile the Duck class below (Duck.java), and the MallardDuck class from two

pages back (MallardDuck.java)

https://github.com/bethrobson/Head-First-Design-Patterns/tree/master/src/headfirst/designpatterns/ducks

https://github.com/bethrobson/Head-First-Design-Patterns/tree/master/src/headfirst/designpatterns/ducks

Testing the Duck Code (2)
• Type and compile the FlyBehavior interface (FlyBehavior.java) and the two

behavior implementation classes (FlyWithWings.java and FlyNoWay.java).

Testing the Duck Code (3)
• Type and compile the

QuackBehavior interface
(QuackBehavior.java) and
the 3 behavior
implementation classes
(Quack.java,
MuteQuack.java, and
Squeak.java).

Testing the Duck Code (4)

• Type and compile the test class (MiniDuckSimulator.java).

The new Duck OOP diagram

• HAS-A can be better than IS-A

Strategy Pattern
• Define a family of algorithms, put each of them into a separate class,

and make their objects interchangeable

Strategy Structure

Observer
• Define a subscription mechanism to notify multiple objects

ActionListener is Observer Pattern

public class CalculatorForm {
private JTextField displayField;
private JPanel CalcPanel;
private JButton buttonCE;
private JButton button0;
……
……
public CalculatorForm() {

button0.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

}
});

……

Enter Your Own Code Here

Example:

Case Study: A Weather Monitoring
• A weather company provides APIs to provide weather information.
• We need to read the information and show on 3 displays: current

conditions, weather statistics, and a simple forecast.

Chapter 2. The Observer Pattern: Keeping your Objects in the know, Head First Design Patterns (Kindle Locations 940-941). O'Reilly Media.

Weather
Statistics

Simple
Forecast

The API class: WeatherData
• The 3 APIs are packed in class WeatherData

1st Implementation of measurementsChanged()
• But it’s hard to add new display in the future!

Publishers + Subscribers = Observer Pattern

• One-to-many relationship

Observer Pattern for Weather Station

Design
the

Weather
Station

Create Subject interface

Implement
Subject interface
• Use ArrayList to save all

observers
• Notify observers in the

function
notifyObservers()

Build Display Element

Test our Weather Station

Chain of Responsibility
• Pass requests to the chain of handlers

Transform Behavior into “handlers”

• Example: node.js

Example: node.js

• Callback function: next()

Chain of Responsibility
Structure
• Handler declares the interface,

common for all concrete
handlers

• Base Handler is an optional
class where you can put the
boilerplate code

• Concrete Handlers contain the
actual code for processing
requests

Working with
Composite Pattern
• Find the right class to do

showHelp()

Command Pattern
• Turn a request into a stand-alone object that contains all information

COMMAND for a Editor

Command Structure

• ConcreteCommand
− defines a binding between a Receiver object and an action.
− implements Execute by invoking the corresponding operation(s) on Receiver.

Collaboration

Undo

Iterator

• A pattern that traverses elements of a collection

// std::iterator example
#include <iostream> // std::cout
#include <iterator> // std::iterator, std::input_iterator_tag

class MyIterator : public std::iterator<std::input_iterator_tag, int>
{

int* p;
public:

MyIterator(int* x) :p(x) {}
MyIterator(const MyIterator& mit) : p(mit.p) {}
MyIterator& operator++() { ++p; return *this; }
MyIterator operator++(int) { MyIterator tmp(*this); operator++(); return tmp; }
bool operator==(const MyIterator& rhs) const { return p == rhs.p; }
bool operator!=(const MyIterator& rhs) const { return p != rhs.p; }
int& operator*() { return *p; }

};

int main() {
int numbers[] = { 10,20,30,40,50 };
MyIterator from(numbers);
MyIterator until(numbers + 5);
for (MyIterator it = from; it != until; it++)
std::cout << *it << ' ';
std::cout << '\n';

return 0;
}

Mediator (a.k.a. Intermediary, Controller)
• Mediator promotes loose coupling by keeping objects from referring to

each other explicitly, and it lets you vary their interaction independently

Example: Font Dialog

Memento
• Save and restore the previous state of an object without

revealing the details of its implementation

Memento Structure

• Memento: stores the internal state of the Originator
• Originator: creates a memento with a snapshot of its current state
• Caretaker: for memento’s safekeeping

Memento Collaborations

8. STATE
• Let an object alter its behavior when its internal state changes
• Ex: Finite State Machine (FSM)

Example: TCP Connection

State Structure

10. Template

• Defines the skeleton
of an algorithm and let
subclasses override
specific steps

11. Visitor
• Separate algorithms from the objects on which they operate

Visitor vs. Iterator
• Visitor Pattern is used to perform an action on a structure of elements

public void VisitorExample()
{

MyVisitorImplementation visitor = new MyVisitorImplementation();
List<object> myListToHide = GetList();

//Here you hide that the aggregate is a List<object>
ConcreteIterator i = new ConcreteIterator(myListToHide);

IAcceptor item = i.First();
while (item != null)
{
item.Accept(visitor);
item = i.Next();
}
//... do something with the result

}

Origin Behavioral Design Patterns
1. Strategy
2. Observer
3. State
4. Command
5. Iterator
6. Chain of Responsibility
7. Interpreter
8. Mediator
9. Memento
10. Template
11. Visitor

References

• Alexander Shvets, “Dive into Design Patterns,” 2018
• https://www.tutorialspoint.com/design_pattern/index.htm
• Erich Gamma, Richard Helm, Ralph Johnson , John Vlissides, “Design

Patterns,” 1994

https://www.tutorialspoint.com/design_pattern/index.htm

	Behavioral Design Patterns
	Behavioral Design Patterns
	Common Behavioral Design Patterns
	Head First Design Patterns
	Design a SimUDuck App
	We want to make ducks FLY!
	But something went horribly wrong…
	What happened?
	Override?
	Design new classes for behaviors
	In Java, use interface for behaviors
	Programming to an interface
	FlyBehavior and QuackBehavior
	Delegate flying and quacking behavior
	Inherit the Duck class
	Testing the Duck code (1)
	Testing the Duck Code (2)
	Testing the Duck Code (3)
	Testing the Duck Code (4)
	The new Duck OOP diagram
	Strategy Pattern
	Strategy Structure
	Observer
	Slide Number 24
	ActionListener is Observer Pattern
	Slide Number 26
	Example:
	Case Study: A Weather Monitoring
	The API class: WeatherData
	1st Implementation of measurementsChanged()
	Publishers + Subscribers = Observer Pattern
	Observer Pattern for Weather Station
	Design the Weather Station
	Create Subject interface
	Implement Subject interface
	Build Display Element
	Test our Weather Station
	Chain of Responsibility
	Transform Behavior into “handlers”
	Example: node.js
	Chain of Responsibility Structure
	Working with Composite Pattern
	Command Pattern
	COMMAND for a Editor
	Command Structure
	Collaboration
	Undo
	Iterator
	Slide Number 49
	Slide Number 50
	Mediator (a.k.a. Intermediary, Controller)
	Slide Number 52
	Example: Font Dialog
	Memento
	Memento Structure
	Memento Collaborations
	8. STATE
	Example: TCP Connection
	State Structure
	10. Template
	Slide Number 61
	11. Visitor
	Visitor vs. Iterator
	Slide Number 64
	Origin Behavioral Design Patterns
	Slide Number 66
	References

