
Creational Design
Patterns

Kuan-Ting Lai
2023/4/8

OOPClass

Abstra
ction

Inheri
-tance

En-
capsu-
lation

Poly-
mor-

phism

Design Patterns

Creational
Design Patterns

Initialize objects
or create new

classes

Structural
Design Patterns

Compose
objects to get
new functions

Behavioral
Design Patterns

Communication
between objects

Creational Design Patterns

Creational
Design Patterns

Initialize objects
or create new

classes

Structural
Design Patterns

Compose
objects to get
new functions

Behavioral
Design Patterns

Communication
between objects

Creational Design Patterns

1. Factory Method
2. Abstract Factory
3. Builder
4. Prototype
5. Singleton

1. Factory Method
• Factory Method provides an interface for creating objects in a

superclass, but allows subclasses to alter the type of objects that will
be created.

Structure of Factory Method

1. Product declares the
interface.

2. Concrete Products
implements the product
interface.

3. Creator declares factory
method

4. Concrete Creators
override the base factory
method

Example: Shape Factory
public interface Shape { void draw(); }

public class Circle implements Shape {
@Override
public void draw() {

System.out.println("Inside Circle::draw() method.");
}

}
public class Square implements Shape {

@Override
public void draw() { System.out.println("Inside Square::draw() method."); }

}
public class ShapeFactory {

//use getShape method to get object of type shape
public Shape getShape(String shapeType){

if(shapeType == null){ return null; }

if(shapeType.equalsIgnoreCase(“CIRCLE")){ return new Circle(); }
else if(shapeType.equalsIgnoreCase("SQUARE")){ return new Square(); }

return null;
}

} https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

Using ShapeFactory

public class FactoryPatternDemo {

public static void main(String[] args) {
ShapeFactory shapeFactory = new ShapeFactory();

//get an object of Circle and call its draw method.
Shape shape1 = shapeFactory.getShape("CIRCLE");
shape1.draw();

//get an object of Rectangle and call its draw method.
Shape shape2 = shapeFactory.getShape("RECTANGLE");
shape2.draw();

}
}

C++ Factory
Pattern:
Creating
Vehicles

https://www.geeksforgeeks.org/design-patterns-set-2-factory-method/

enum VehicleType {VT_TwoWheeler, VT_ThreeWheeler};
// Library classes
class Vehicle {
public:

virtual void printVehicle() = 0;
static Vehicle* Create(VehicleType type);

};
class TwoWheeler : public Vehicle {
public:

void printVehicle() {cout << "I am two wheeler" << endl;}
};
class ThreeWheeler : public Vehicle {
public:

void printVehicle() { cout << "I am three wheeler" << endl;}
};
// Factory method to create objects of different types.
Vehicle* Vehicle::Create(VehicleType type) {

if (type == VT_TwoWheeler)
return new TwoWheeler();

else if (type == VT_ThreeWheeler)
return new ThreeWheeler();

else return NULL;
}

https://www.geeksforgeeks.org/design-patterns-set-2-factory-method/

2. Abstract Factory Pattern

• Just define an interface (abstract class) for creating families of related
objects, but doesn’t specify their concrete sub-classes

• Abstract factory is also called as factory of factories

Structure of Abstract Factory

Erich Gamma et al., “Design Patterns,” 1994, pg. 87

Example:
Shape Abstract
Factory Pattern

public class FactoryProducer {
public static AbstractFactory getFactory(boolean rounded) {

if (rounded) {
return new RoundedShapeFactory();

}
else {

return new ShapeFactory();
}

}
}
public abstract class AbstractFactory {

abstract Shape getShape(String shapeType);
}
// Extend Abstract Factory
public class RoundedShapeFactory extends AbstractFactory {

@Override
public Shape getShape(String shapeType) {

if (shapeType.equalsIgnoreCase("RECTANGLE")) {
return new RoundedRectangle();

}
else if (shapeType.equalsIgnoreCase("SQUARE")) {

return new RoundedSquare();
}
return null;

}
}
...... https://www.tutorialspoint.com/design_pattern/abstract_factory_pattern.htm

https://www.tutorialspoint.com/design_pattern/abstract_factory_pattern.htm

Using AbstractFactory to Get Rounded Shape
public class AbstractFactoryPatternDemo {

public static void main(String[] args) {
//get shape factory
AbstractFactory shapeFactory = FactoryProducer.getFactory(false);
Shape shape1 = shapeFactory.getShape("RECTANGLE");
shape1.draw();

//get rounded shape factory
AbstractFactory shapeFactory1 = FactoryProducer.getFactory(true);
//get rounded rectangle
Shape shape2 = shapeFactory1.getShape("RECTANGLE");
shape2.draw();

}
}

3. Builder
• Construct complex objects step by step.

Example: Building a House

Solution 1: constructers with many parameters?

Solution 2: Using Builder Design Pattern

Structure of Builder

Erich Gamma et al., “Design Patterns,” 1994, pg. 98

Erich Gamma et al., “Design Patterns,” 1994, pg. 99

Real Builder in Java
• Create a class UserBuilder to initialize class User

https://howtodoinjava.com/design-patterns/creational/builder-pattern-in-java/

public class User
{

private String firstName;
private String lastName;
private int age;
private String phone;
private String address;

private User(UserBuilder builder) {
this.firstName = builder.firstName;
this.lastName = builder.lastName;
this.age = builder.age;
this.phone = builder.phone;
this.address = builder.address;

}
}

https://howtodoinjava.com/design-patterns/creational/builder-pattern-in-java/

UserBuilder

• Provide functions to initialize
different member variables

• Provide build() to return
initialized User object

public class UserBuilder
{

private final String firstName;
private final String lastName;
private int age;
private String phone;
private String address;

public UserBuilder(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}
public UserBuilder age(int age) {

this.age = age;
return this;

}
public UserBuilder phone(String phone) {

this.phone = phone;
return this;

}
public UserBuilder address(String address) {

this.address = address;
return this;

}
//Return the finally consrcuted User object
public User build() {

User user = new User(this);
return user;

}
}

Test UserBuilder
• Avoid telescoping constructors problem

public static void main(String[] args)
{

User user1 = new User.UserBuilder("Lokesh", "Gupta")
.age(30)
.phone("1234567")
.address("Fake address 1234")
.build();

User user2 = new User.UserBuilder("Super", "Man")
//No age
//No phone
//no address
.build();

}

https://howtodoinjava.com/design-patterns/creational/builder-pattern-in-java/

https://howtodoinjava.com/design-patterns/creational/builder-pattern-in-java/

4. Prototype

• Allow copying existing objects without making your code dependent
on their classes

Prototype Structure

1. Define clone() method.
2. Concrete Prototype class

implements the cloning
method.

3. The Client can produce a
copy of any object that
follows the prototype
interface.

Java Cloneable Interface
• A class implements the Cloneable interface to indicate that

Object.clone() can be used to make a field-for-field copy of instances
public class DogName implements Cloneable {

public String dname;
// Overriding clone() method of Object class
public Object clone()throws CloneNotSupportedException {

return (DogName)super.clone();
}
public static void main(String[] args) {

DogName obj1 = new DogName("Tommy");
try {

DogName obj2 = (DogName)obj1.clone();
System.out.println(obj2.getName());

}
catch (CloneNotSupportedException e) {

e.printStackTrace();
}

}
}

Example:
Shape

Prototype

https://www.tutorialspoint.com/design_pattern/prototype_pattern.htm

https://www.tutorialspoint.com/design_pattern/prototype_pattern.htm

public abstract class Shape implements Cloneable {
private String id;
protected String type;

abstract void draw();

public String getType() { return type; }
public String getId() { return id; }
public void setId(String id) { this.id = id; }

public Object clone() {
Object clone = null;

try {
clone = super.clone();

}
catch (CloneNotSupportedException e) {

e.printStackTrace();
}
return clone;

}
}

Shallow Copy vs. Deep Copy

• Shallow Copy
− Copy all fields of Object A to Object B, including pointers
− Changes in referenced objects in Object A also reflect in Object B

• Deep Copy
− For pointers in Object A, create new instances for Object B, and then copy the

contents
− Changes in referenced objects in Object A don’t reflect in Object B

5. Singleton
• Singleton is a creational design pattern that lets you ensure that a

class has only one instance

5. Singleton Structure

C++ Singleton Example
class Singleton
{
public:

static Singleton* getInstance();

private:
static Singleton* instance; // Here will be the instance stored.

Singleton(); // Private constructor to prevent instancing.
};

/* Null, because instance will be initialized on demand. */
Singleton* Singleton::instance = 0;

Singleton* Singleton::getInstance()
{

if (instance == 0)
instance = new Singleton();

return instance;
}

Java Singleton Example
public class SingleObject {

//create an object of SingleObject
private static SingleObject instance = new SingleObject();

//make the constructor private so that this class cannot be
//instantiated
private SingleObject() {}

//Get the only object available
public static SingleObject getInstance() {

return instance;
}

public void showMessage() {
System.out.println("Hello World!");

}
}

https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

Summary

• Many designs start by using Factory Method and evolve
toward Abstract Factory, Prototype, or Builder

• Builder focuses on constructing complex objects step by step.
• Abstract Factory specializes in creating families of related

objects.
• Prototype is used to clone (copy) objects
• Singleton ensures that a class has only one instance

Dive into Design Patterns
• Alexander Shvets

References

• Alexander Shvets, “Dive into Design Patterns,” 2018
• https://howtodoinjava.com/design-patterns/
• https://www.tutorialspoint.com/design_pattern/index.htm

https://howtodoinjava.com/design-patterns/
https://www.tutorialspoint.com/design_pattern/index.htm

	Creational Design Patterns
	Design Patterns
	Creational Design Patterns
	Creational Design Patterns
	Slide Number 5
	1. Factory Method
	Structure of Factory Method
	Example: Shape Factory
	Using ShapeFactory
	C++ Factory Pattern: Creating Vehicles
	2. Abstract Factory Pattern
	Structure of Abstract Factory
	Example: �Shape Abstract Factory Pattern
	Slide Number 14
	Using AbstractFactory to Get Rounded Shape
	3. Builder
	Example: Building a House
	Solution 1: constructers with many parameters?
	Solution 2: Using Builder Design Pattern
	Structure of Builder
	Slide Number 21
	Real Builder in Java
	UserBuilder
	Test UserBuilder
	4. Prototype
	Prototype Structure
	Java Cloneable Interface
	Example: Shape Prototype
	Slide Number 29
	Shallow Copy vs. Deep Copy
	5. Singleton
	5. Singleton Structure
	C++ Singleton Example
	Java Singleton Example
	Summary
	Dive into Design Patterns
	References

