
Generative Adversarial Networks 
(GANs)

Prof. Kuan-Ting Lai

2022/6/6



DeepFake (Intro)

https://www.youtube.com/watch?v=T76bK2t2r8g


This Person does not Exist (thispersondoesnotexist.com)

https://thispersondoesnotexist.com/


Father of GAN: Ian Goodfellow

"The generative model can be thought of as analogous to a
team of counterfeiters, trying to produce fake currency and
use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit
currency.

Competition in this game drives both teams to improve
their methods until the counterfeits are indistinguishable
from the genuine articles." Goodfellow et. al.

https://arxiv.org/pdf/1406.2661.pdf


Generative Adversarial Networks (GAN)

• https://www.youtube.com/watch?v=9JpdAg6uMXs

• https://arxiv.org/abs/1701.00160

https://www.youtube.com/watch?v=9JpdAg6uMXs
https://arxiv.org/abs/1701.00160


What is a Generative Model?

• Informally:
• Generative models can generate new data instances.

• Discriminative models discriminate between different kinds of data 
instances.

• Formally
• Generative models capture the joint probability p(X, Y), or just p(X) if 

there are no labels.

• Discriminative models capture the conditional probability p(Y | X).

https://developers.google.com/machine-learning/gan

https://developers.google.com/machine-learning/gan


Training Generative Models is Hard!

https://developers.google.com/machine-learning/gan/generative

https://developers.google.com/machine-learning/gan/generative


Generative Adversarial Networks (GAN)

• Ian Goodfellow et al. (2014)

8



GAN Structure

https://developers.google.com/machine-learning/gan/gan_structure

https://developers.google.com/machine-learning/gan/gan_structure


The Discriminator
• The discriminator loss penalizes the discriminator for misclassifying a real instance as 

fake or a fake instance as real.

• The discriminator updates its weights through backpropagation



The Generator

https://developers.google.com/machine-learning/gan/generator

https://developers.google.com/machine-learning/gan/generator


The Generator Training Steps

1. Sample random noise.

2. Produce generator output from sampled random noise.

3. Get discriminator "Real" or "Fake" classification for generator 
output.

4. Calculate loss from discriminator classification.

5. Backpropagate through both the discriminator and generator to 
obtain gradients.

6. Use gradients to change only the generator weights.



GAN Training

• Alternating Training
− Train the discriminator for one or more epochs.

− Train the generator for one or more epochs.

− Repeat steps 1 and 2 to continue to train the generator and discriminator 
networks.

• Convergence
− The discriminator performance gets worse 

− If the generator succeeds perfectly, then the discriminator has a 50% 
accuracy.

https://developers.google.com/machine-learning/gan/training

https://developers.google.com/machine-learning/gan/training


GAN Loss Functions

• Minimax Loss
− The loss function used in the paper that introduced GANs.

• Wasserstein Loss
− The default loss function for TF-GAN Estimators. First described in 

a 2017 paper.

https://developers.google.com/machine-learning/gan/loss

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.07875
https://developers.google.com/machine-learning/gan/loss


Minimax Loss

• D(x) is the discriminator's estimate of the probability that the real instance x is real.

• Ex is the expected value over all real data instances.

• G(z) is the generator's output when given noise z.

• D(G(z)) is the discriminator's estimate of the probability that a fake instance is real.

• Ez is the expected value over all generated fake instances G(z).

• The formula derives from the cross-entropy between the real and generated 
distributions.

https://developers.google.com/machine-learning/gan/loss

https://developers.google.com/machine-learning/gan/loss


Wasserstein Loss

• In Wasserstein GAN, discriminator does not actually classify instances. 
The output does not have to be between 0 and 1

• Discriminator training just tries to make the output larger for real 
instances than for fake instances.

• Critic Loss: D(x) - D(G(z))
− The discriminator tries to maximize the difference between its output on real 

instances and fake instances.

• Generator Loss: D(G(z))
− The generator tries to maximize the discriminator's output for its fake 

instances.

− Use earth mover distance

https://developers.google.com/machine-learning/gan/loss

https://developers.google.com/machine-learning/gan/loss


Common Problems of Training GAN Networks

• Strong Discriminator
− if the discriminator is too good, then generator training can fail due to 

vanishing gradients

• Mode Collapse
− The generator may learn to produce only one output

• Failure to Converge
− Solution 1: adding noise to discriminator inputs

− Solution 2: penalizing discriminator weights

https://developers.google.com/machine-learning/gan/problems

https://developers.google.com/machine-learning/gan/problems


Bag of Tricks for Training GANs
• Use tanh as the last activation in the generator, instead of sigmoid

• Sample points from the latent space using a normal distribution

• Stochasticity is good to induce robustness. Introducing randomness during 
training helps prevent GAN to get stuck. 
− Use dropout in the discriminator
− Add some random noise to the labels for the discriminator.

• Sparse gradients can hinder GAN training. There are two things that can 
induce gradient sparsity: 1) max pooling, 2) ReLU activations. 
− Use strided convolutions for downsampling
− Use LeakyReLU, which allows small negative activation values.

• In generated images, it is common to see "checkerboard artifacts" caused 
by unequal coverage of the pixel space in the generator. 
− Use a kernel size that is divisible by the stride size



Checkerboard Artifacts

• Caused by unequal coverage of the pixel space in the generator

• Solution: Use a kernel size that is divisible by the stride size in Conv2D
and Conv2DTranspose



Training GAN for Celebrity Faces
• Code: https://github.com/fchollet/deep-learning-with-python-

notebooks/blob/master/chapter12_part05_gans.ipynb
Dataset: CelebA Dataset (cuhk.edu.hk)

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part05_gans.ipynb
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html


Loading Images from Directory

• Unzip the dataset into “celeba_gan” folder



Generator



from tensorflow.keras import layers
discriminator = keras.Sequential(

[
keras.Input(shape=(64, 64, 3)),
layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Flatten(),
layers.Dropout(0.2), # Important Trick!
layers.Dense(1, activation="sigmoid"),

],
name="discriminator",

)

Discriminator



GAN Training Loop

1. Draw random points in the latent space (random noise).

2. Generate images with generator using this random noise.

3. Mix the generated images with real ones.

4. Train discriminator using these mixed images including real and fake 
(generated) images.

5. Fix the discriminator’s weights

6. Draw new random points in the latent space.

7. Train the generator to fool the discriminator



The GAN Model



train_step() of the GAN Model (2-1)



train_step() of the GAN Model (2-2)



Monitor the Training

class GANMonitor(keras.callbacks.Callback):
def __init__(self, num_img=3, latent_dim=128):

self.num_img = num_img
self.latent_dim = latent_dim

def on_epoch_end(self, epoch, logs=None):
random_latent_vectors = tf.random.normal(shape=(self.num_img, 

self.latent_dim))
generated_images = self.model.generator(random_latent_vectors)
generated_images *= 255
generated_images.numpy()
for i in range(self.num_img):

img = keras.utils.array_to_img(generated_images[i])
img.save(f"generated_img_{epoch:03d}_{i}.png")



Compiling and Training GAN

epochs = 100

gan = GAN(discriminator=discriminator, generator=generator, 
latent_dim=latent_dim)

gan.compile(
d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
loss_fn=keras.losses.BinaryCrossentropy(),

)

gan.fit(
dataset, epochs=epochs, callbacks=[GANMonitor(num_img=10, 

latent_dim=latent_dim)]
)



Training Results

Epoch 1Epoch 0 Epoch 9 Epoch 14

Epoch 26Epoch 21 Epoch 27 Epoch 28



Interesting GAN 
Applications



Deepfake Round Table

https://www.creativebloq.com/features/deepfake-examples

https://www.youtube.com/watch?v=l_6Tumd8EQI
https://www.creativebloq.com/features/deepfake-examples


This Person (and the Creepy Person) do not Exist!

thispersondoesnotexist.com

https://thispersondoesnotexist.com/


Evolution of GAN Face Generation

https://spectra.mathpix.com/article/2021.09.00009/gans

https://spectra.mathpix.com/article/2021.09.00009/gans


How to Detect Generated Faces?

• Detect fake faces by central 
positioning the eyes

• Stanford University 
researchers identify fake 
LinkedIn profiles using eye 
locations

https://www.capradio.org/news/npr/story?storyid=1088140809

https://www.capradio.org/news/npr/story?storyid=1088140809


Anime GAN (https://make.girls.moe/)

https://arxiv.org/abs/1708.05509

https://heartbeat.comet.ml/my-mangagan-building-my-first-generative-adversarial-network-2ec1920257e3

https://make.girls.moe/
https://arxiv.org/abs/1708.05509
https://heartbeat.comet.ml/my-mangagan-building-my-first-generative-adversarial-network-2ec1920257e3


https://make.girls.moe/

https://make.girls.moe/


Super Resolution GAN

• Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Generative 
Adversarial Network,” 2017 (https://arxiv.org/pdf/1609.04802.pdf) 

4 X Upscaling

https://arxiv.org/pdf/1609.04802.pdf


More GAN Models

• TensorFlow Tutorial / Generative

1. Pixel-2-Pixel

2. CycleGAN

3. Adversarial FGSM

https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm


Pix2Pix
• Phillip Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, 2018

https://arxiv.org/abs/1611.07004


Training Conditional GAN

• Both the generator and discriminator observe the input edge map

• Use U-Net and PatchGAN discriminator



Image-to-Image Demo

• https://affinelayer.com/pixsrv/

https://affinelayer.com/pixsrv/


My Work (Cat Computer)



CycleGAN
• Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2018

• Learn to automatically “translate” an image from one into the other and vice versa

https://arxiv.org/abs/1703.10593


Model of CycleGAN

• Two mapping functions G : X → Y and F : Y → X

• Two cycle consistency losses:
− Forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ x

− Backward cycle-consistency loss: y → F(y) → G(F(y)) ≈ y



TensorFlow CycleGAN Results



GauGAN
(NVIDIA)



NVIDIA AI Playground

https://www.nvidia.com/en-us/research/ai-playground/


My Work by GauGAN 2



Adversarial Attack

• Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015

• Fast Gradient Signed Method (FGSM)

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

https://arxiv.org/abs/1412.6572
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm


Fooling AI Surveillance Cameras

https://www.arxiv-vanity.com/papers/1904.08653/

https://www.arxiv-vanity.com/papers/1904.08653/


Key Takeaways

• Generative Adversarial Networks has two sub-networks: Generator and 
Discriminator. They compete with each other. 

• Training is done if the Discriminator fails to detect fake image. (ACC=0.5)

• GANs are hard to train. Introducing randomness during training is important.

• Max pooling and ReLu introduces sparsity and hinder GAN training

• Conditional GANs can accept conditional images as inputs than generate 
target outputs

• CycleGAN can translate image from one domain to the other and vice versa.



References

• https://www.tensorflow.org/tutorials/generative/

• https://developers.google.com/machine-learning/gan

• https://make.girls.moe/

• https://www.creativebloq.com/features/deepfake-examples

• https://www.nvidia.com/en-us/research/ai-playground/

• https://www.projectpro.io/article/generative-adversarial-networks-gan-based-
projects-to-work-on/530

• https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-
4c9ecca35900

• https://affinelayer.com/pixsrv/

https://www.tensorflow.org/tutorials/generative/
https://developers.google.com/machine-learning/gan
https://make.girls.moe/
https://www.creativebloq.com/features/deepfake-examples
https://www.nvidia.com/en-us/research/ai-playground/
https://www.projectpro.io/article/generative-adversarial-networks-gan-based-projects-to-work-on/530
https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-4c9ecca35900
https://affinelayer.com/pixsrv/

