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DeepFake (Intro)



https://www.youtube.com/watch?v=T76bK2t2r8g

This Person does not Exist (thispersondoesnotexist.com)



https://thispersondoesnotexist.com/

Father of GAN: lan Goodfellow

Training set l/ / Discriminator
/ O\
L — Real
Random B / — — {Fa ke
::> %
Generator Fake image

"The generative model can be thought of as analogous to a
team of counterfeiters, trying to produce fake currency and
use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit
currency.

Competition in this game drives both teams to improve
their methods until the counterfeits are indistinguishable
from the genuine articles." Goodfellow et. al.



https://arxiv.org/pdf/1406.2661.pdf

Generative Adversarial Networks (GAN)

There are many interesting recent
development in deep learning...The most
important one, in my opinion, is
adversarial training (also called GAN for
Generative Adversarial Networks). This,
and the variations that are now being
proposed, is the most interesting idea in
the last 10 years in ML.

Yann LeCun


https://www.youtube.com/watch?v=9JpdAg6uMXs
https://arxiv.org/abs/1701.00160

What is a Generative Model?

* Informally:
« Generative models can generate new data instances.
 Discriminative models discriminate between different kinds of data
instances.
* Formally

 Generative models capture the joint probability p(X, Y), or just p(X) if
there are no labels.

« Discriminative models capture the conditional probability p(Y | X).

https://developers.google.com/machine-learning/gan



https://developers.google.com/machine-learning/gan

Training Generative Models is Hard!

* Discriminative Model * Generative Model
r p(y|z) p(z,y)
1
g = —— 0 @ | ,-s\
O/‘. ..:l.l.--‘ D/-/"s’.,} -------- y="0

https://developers.google.com/machine-learning/gan/generative



https://developers.google.com/machine-learning/gan/generative

Generative Adversarial Networks (GAN)

* lan Goodfellow et al. (2014)

Training set

Random

Generator

%

s

vy

Fake image

Discriminator

{Fa ke



GAN Structure

Real images

Sample

Random input

Generator

Sample

Discriminator

SSO|
Jojeulwniosiqg

https://developers.google.com/machine-learning/gan/gan_structure

SSO|
Jojelauan)



https://developers.google.com/machine-learning/gan/gan_structure

he Discriminator

* The discriminator loss penalizes the discriminator for misclassifying a real instance as
fake or a fake instance as real.

* The discriminator updates its weights through backpropagation

\/

Real images » Sample Discriminator

\ 4
SSO|
JojeuiwiIosiqg

— Generator > Sample

SSO|
Jojelauan)

Random input




The Generator

Real images —— Sample

SSO|
JojeuiwLiosiqg

—_ Generator | » Sample | — 3 Discriminator >

SSO|
lojelauan)

Random input

< I Backpropagation

https://developers.google.com/machine-learning/gan/generator



https://developers.google.com/machine-learning/gan/generator

The Generator Training Steps

1. Sample random noise.
Produce generator output from sampled random noise.

3. Getdiscriminator "Real" or "Fake" classification for generator
output.

4. Calculate loss from discriminator classification.

5. Backpropagate through both the discriminator and generator to
obtain gradients.

6. Use gradients to change only the generator weights.



GAN Training

* Alternating Training
— Train the discriminator for one or more epochs.
— Train the generator for one or more epochs.
— Repeat steps 1 and 2 to continue to train the generator and discriminator

networks.
* Convergence
— The discriminator performance gets worse

— If the generator succeeds perfectly, then the discriminator has a 50%
accuracy.

https://developers.google.com/machine-learning/gan/training



https://developers.google.com/machine-learning/gan/training

GAN Loss Functions

* Minimax Loss
—The loss function used in the paper that introduced GANS.

* \Wasserstein Loss

— The default loss function for TF-GAN Estimators. First described in
a 201/ paper.

https://developers.google.com/machine-learning/gan/loss



https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.07875
https://developers.google.com/machine-learning/gan/loss

Minimax Loss

D(x) is the discriminator's estimate of the probability that the real instance x is real.
E, is the expected value over all real data instances.

G(z) is the generator's output when given noise z.

D(G(z)) is the discriminator's estimate of the probability that a fake instance is real.
E, is the expected value over all generated fake instances G(z).

The formula derives from the cross-entropy between the real and generated
distributions.

min 12X | Egpy,q, 108 Doy (2) + Eanp(e) 10g(1 — Do, (Go, (2)))
g d

https://developers.google.com/machine-learning/gan/loss



https://developers.google.com/machine-learning/gan/loss

Wassersteln Loss

* In Wasserstein GAN, discriminator does not actually classify instances.
The output does not have to be between 0 and 1

* Discriminator training just tries to make the output larger for real
instances than for fake instances.

* Critic Loss: D(x) - D(G(z))

— The discriminator tries to maximize the difference between its output on real
instances and fake instances.

* Generator Loss: D(G(z))

— The generator tries to maximize the discriminator's output for its fake
Instances.

— Use earth mover distance

https://developers.google.com/machine-learning/gan/loss



https://developers.google.com/machine-learning/gan/loss

Common Problems of Training GAN Networks

* Strong Discriminator

— if the discriminator is too good, then generator training can fail due to
vanishing gradients

* Mode Collapse

— The generator may learn to produce only one output

* Failure to Converge
— Solution 1: adding noise to discriminator inputs
— Solution 2: penalizing discriminator weights

https://developers.google.com/machine-learning/gan/problems



https://developers.google.com/machine-learning/gan/problems

Bag of Tricks for Training GANSs

* Use tanh as the last activation in the generator, instead of sigmoid
e Sample points from the latent space using a normal distribution

* Stochasticity is good to induce robustness. Introducing randomness during
training helps prevent GAN to get stuck.

— Use dropout in the discriminator
— Add some random noise to the labels for the discriminator.

* Sparse gradients can hinder GAN training. There are two things that can
induce gradient sparsity: 1) max pooling, 2) ReLU activations.

— Use strided convolutions for downsampling
— Use LeakyRelLU, which allows small negative activation values.

* In generated images, it is common to see "checkerboard artifacts" caused
by unequal coverage of the pixel space in the generator.

— Use a kernel size that is divisible by the stride size



Checkerboard Artifacts

* Caused by unequal coverage of the pixel space in the generator

* Solution: Use a kernel size that is divisible by the stride size in Conv2D
and Conv2DTranspose
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https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part05_gans.ipynb
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Loading Images from Directory

* Unzip the dataset into “celeba gan” folder

from tensorflow import keras

dataset = keras.utils.dataset from directory(
"celeba gan",
label mode=None, <
image size=(64, 64),
batch size=32,
smart resize=True) <——

Only the images will be
returned—no labels.

We will resize the images to 64 X 64 by using a smart
combination of cropping and resizing to preserve aspect
ratio. We don’t want face proportions to get distorted!

dataset = dataset.map(lambda x: x / 255.)



Generator

latent dim

generator = keras.Sequential (

Revert the
Flatten layer of
the encoder.

Revert the
Conv2D layers
of the encoder.

(

vy

1,

name="generator",

128 <

The latent space
will be made of 128-
dimensional vectors.

keras. Input (shape=(latent dim,)),

layers
layers
layers

layers.

layers
layers
layers
layers
layers

.Dense(8 * 8 * 128),

We use LeakyRelU
as our activation.

.Reshape((8, 8, 128)),

.Conv2DTranspose (128, kernel size=4, strides=2, padding="same"),
LeakyReLU (alpha=0.2), <—
.Conv2DTranspose (256, kernel size=4, strides=2, padding="same"),
.LeakyReLU (alpha=0.2), g—
.Conv2DTranspose (512, kernel size=4, strides=2, padding="same"),
.LeakyReLU (alpha=0.2), <G—
.Conv2D (3, kernel size=5, padding="same", activation="sigmoid"),

~

‘0t



Discriminator

from tensorflow.keras import layers
discriminator = keras.Sequential(

|
keras.Input(shape=(64, 64, 3)),
layers.Conv2D(64, kernel size=4, strides=2, padding="same"),
layers.LeakyRelLU(alpha=0.2),
layers.Conv2D(128, kernel size=4, strides=2, padding="same"),
layers.LeakyRelLU(alpha=0.2),
layers.Conv2D(128, kernel size=4, strides=2, padding="same"),
layers.LeakyRelLU(alpha=0.2),
layers.Flatten(),
layers.Dropout(0.2), # Important Trick!
layers.Dense(1, activation="sigmoid"),
I,

name="discriminator",




GAN Training Loop

Draw random points in the latent space (random noise).
Generate images with generator using this random noise.
Mix the generated images with real ones.

s w e

Train discriminator using these mixed images including real and fake
(generated) images.

hd

Fix the discriminator’s weights

o

Draw new random points in the latent space.
7. Train the generator to fool the discriminator



The GAN Model

import tensorflow as tf
class GAN (keras.Model) :
def init (self, discriminator, generator, latent dim):

super (). init ()
self.discriminator = discriminator
self.generator = generator
self.latent dim = latent dim
self.d loss metric = keras.metrics.Mean(name="d loss")
self.g loss metric = keras.metrics.Mean(name="g loss") %_

def compile(self, d optimizer, g optimizer, loss fn):

super (GAN, self).compile() Sets up metrics
self.d optimizer = d optimizer to track the two
self.g optimizer = g optimizer losses over each

self.loss fn = loss fn training epoch

@property

def metrics(self): |
return [self.d loss metric, self.g loss metric]




train_step() of the GAN Model (2-1)

def train step(self, real images):
batch size = tf.shape(real images) [0]

Decodes random latent wvectors = tf.random.normal | :.iamples random points
t!'reml:n Eh;PE.‘= {haEch_size; self.latent dim)) in the latent space
fake images | generated images = self.generator(random latent vectors)
Combines —i> combined images = tf.concat([generated images, real images], axis=0)
them with labels = tf.concat | Assembles labels,
real images [tf.ones((batch _size, 1)), tf.zeros((batch size, 1))], discriminating real
axis=0 from fake images
)
labels += 0.05 * tf.random.uniform(tf.shape(labels))] <— Adds random
noise to the
with tf.GradientTape() as tape: labels—an
predictions = self.discriminator ({combined images) important trick!
Trains the d loss = self.loss fn(labels, predictions)
discriminator grads = tape.gradient (d loss, self.discriminator.trainable weights)
self.d optimizer.apply gradients|
zip(grads, self.discriminator.trainable weights)

)



train step() of the GAN Model (2-2)

Samples
random
points in the
latent space

Trains the
generator

S

random latent wvectors = tf.random.normal (

shape=(batch size, self.latent dim)) Assembles labels that
- - say “these are all real

misleading labels = tf.zeros((batch size, 1)) |mages" (It’S 4 IIE!}
with tf.GradientTape() as taps:

predictions = self.discriminator(

self.generator (random latent wvectors))

g loss = self.loss fnimisleading labels, predictions)
grads = tape.gradient (g loss, self.generator.trainable weights)
self.g optimizer.apply gradients |

zipl(grads, self.generator.trainable weights))

self.d loss metric.update state(d loss)

self.g loss metric.update state(g loss)

return {"d loss": self.d loss metric.result(),
"g loss": self.g loss metric.result()}



Monitor the Training

class GANMonitor(keras.callbacks.Callback):
def init (self, num_img=3, latent dim=128):
self.num_img = num_img
self.latent dim = latent dim

def on epoch end(self, epoch, logs=None):
random_latent vectors = tf.random.normal(shape=(self.num_img,
self.latent_dim))
generated images = self.model.generator(random_latent vectors)
generated images *= 255
generated_images.numpy ()
for i in range(self.num_img):
img = keras.utils.array to_img(generated images[i])
img.save(f"generated img {epoch:03d} {i}.png")




Compiling and Training GAN

epochs = 100

gan = GAN(discriminator=discriminator, generator=generator,
latent dim=latent_dim)
gan.compile(
d optimizer=keras.optimizers.Adam(learning rate=0.0001),
g optimizer=keras.optimizers.Adam(learning rate=0.0001),
loss fn=keras.losses.BinaryCrossentropy(),

)

gan.fit(
dataset, epochs=epochs, callbacks=[GANMonitor(num_img=10,
latent dim=latent _dim)]




Training Results

Epoch O Epoch 9 Epoch 14
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Deepfake Round Table

. ’ —

https://www.creativeblc

__pulELL R g . o s o e


https://www.youtube.com/watch?v=l_6Tumd8EQI
https://www.creativebloq.com/features/deepfake-examples

This Person (and the Creepy Person) do not Exist!

thispersondoesnotexist.com



https://thispersondoesnotexist.com/

Evolution of GAN Face Generation

2018

https://spectra.mathpix.com/article/2021.09.00009/gans



https://spectra.mathpix.com/article/2021.09.00009/gans

How to Detect Generated Faces?

e Detect fake faces by central
positioning the eyes

 Stanford University
researchers identify fake
LinkedIn profiles using eye
locations

https://www.capradio.org/news/npr/story?storyid=1088140809



https://www.capradio.org/news/npr/story?storyid=1088140809

Anime GAN (https://make.girls.moe/

https://arxiv.org/abs/1708.05509

https://heartbeat.comet.ml/my-mangagan-building-my-first-generative-adversarial-network-2ec1920257e3



https://make.girls.moe/
https://arxiv.org/abs/1708.05509
https://heartbeat.comet.ml/my-mangagan-building-my-first-generative-adversarial-network-2ec1920257e3

https://make.girls.moe/
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Super Resolution GAN

* Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network,” 2017 (https://arxiv.org/pdf/1609.04802.pdf)

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

4 ‘\ : g

-



https://arxiv.org/pdf/1609.04802.pdf

More GAN Models

* TensorFlow Tutorial / Generative
1. Pixel-2-Pixel

2. CycleGAN

3. Adversarial FGSM



https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

Pix2Pix

* Phillip Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, 2018

Labels to Street Scene Labels to Facade BW to Color



https://arxiv.org/abs/1611.07004

Training Conditional GAN

* Both the generator and discriminator observe the input edge map
e Use U-Net and PatchGAN discriminator

45
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Image-to-Image Demo

* https://affinelayer.com/pixsrv/

#edges2cats by Christopher Hesse
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by Kaihu Chen
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by Jack Qiao
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sketch by Yann LeCun


https://affinelayer.com/pixsrv/

My Work (Cat Computer)

INPUT OUTPUT

PIX2piX

pProcess

m clear random




CycleGAN

 Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2018

* Learn to automatically “translate” an image from one into the other and vice versa

__ Monet — Photos S ‘Zebras - Horses -~ Summer Z_ Winter

Photograph | an Gogh - zanne



https://arxiv.org/abs/1703.10593

Model of CycleGAN

* Two mapping functionsG: X > YandF:Y - X
* Two cycle consistency losses:

— Forward cycle-consistency loss: x 2 G(x) & F(G(x)) = x
— Backward cycle-consistency loss: y = F(y) = G(F(y ))
¢ ZAge
/_\ - - E - //—\ -
Dx Dy |« Y N 2] X Y
R T
X /\ Y A Y A | Y c‘}-'cle—consistenc}r
\/ cycle-consistency ... \ O > 4/.".\S ..... - loss

F loss



TensorFlow CycleGAN Results

Input Image Predicted Image
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Adversarial Attack

e Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015
* Fast Gradient Signed Method (FGSM)

+.007 x =
: T +
’ Vel 928))  cgn(v,J(0,2,9))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

https://www.tensorflow.org/tutorials/generative/adversarial fesm



https://arxiv.org/abs/1412.6572
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

Fooling Al Surveillance Cameras

https: //www arxiv-vanity. com/papers/1904 08653/



https://www.arxiv-vanity.com/papers/1904.08653/

Key Takeaways

e Generative Adversarial Networks has two sub-networks: Generator and
Discriminator. They compete with each other.

* Training is done if the Discriminator fails to detect fake image. (ACC=0.5)
 GANs are hard to train. Introducing randomness during training is important.
* Max pooling and RelLu introduces sparsity and hinder GAN training

* Conditional GANs can accept conditional images as inputs than generate
target outputs

* CycleGAN can translate image from one domain to the other and vice versa.
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