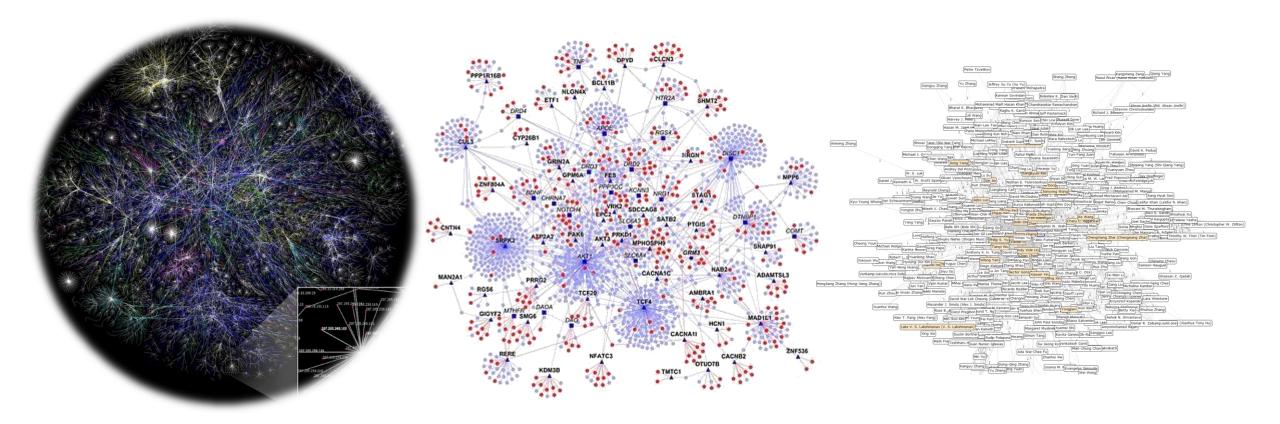
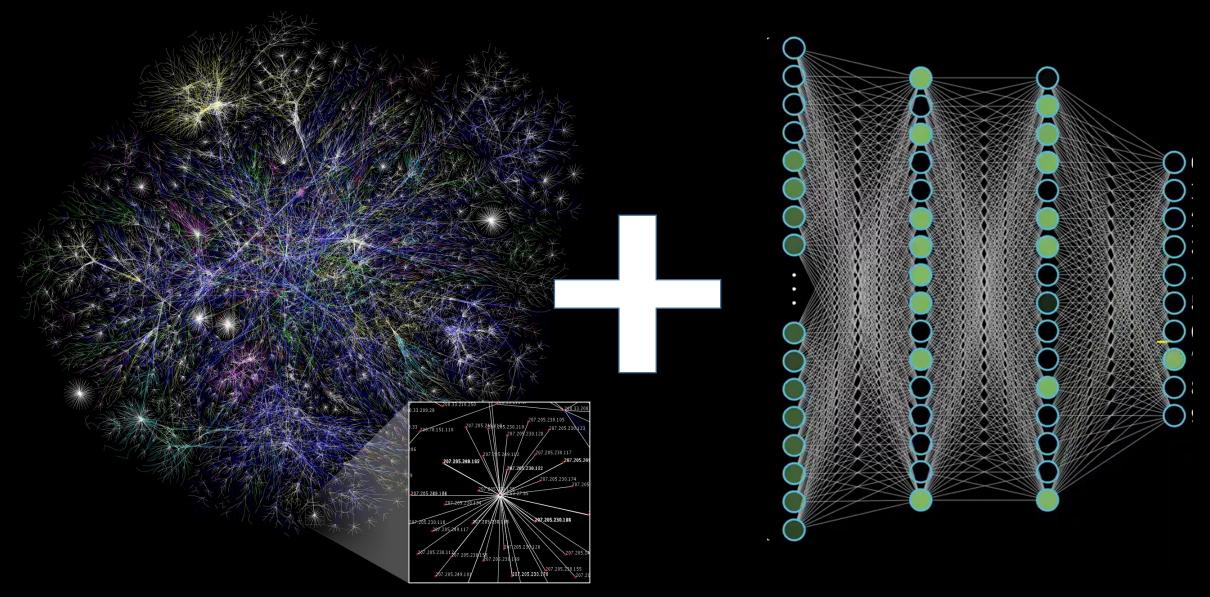


Graphs (Networks)

- Ubiquitous in our life
 - -Ex: the Internet, Social Networks, Protein-interaction

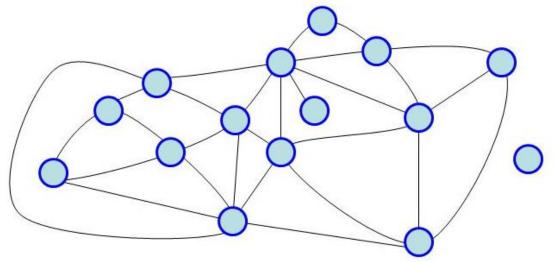


Graph + Deep Learning



Graph Terminology

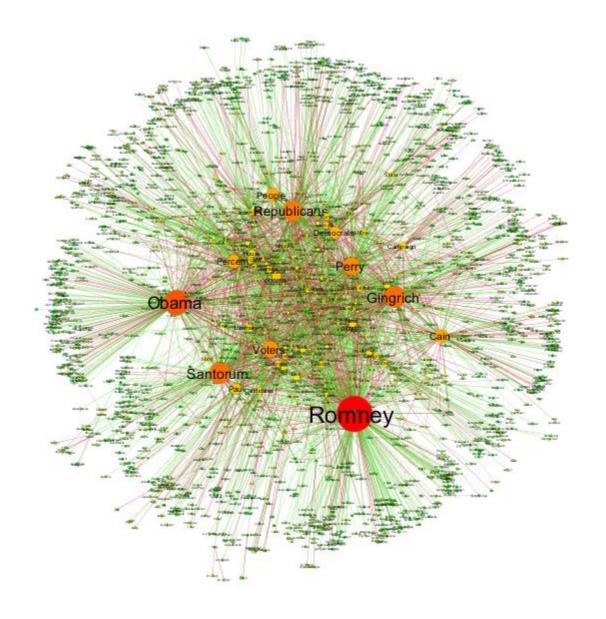
- An edge (link) connects two vertices (nodes)
- Two vertices are *adjacent* if they are *connected*
- An edge is *incident* with the two vertices it connects
- The degree of a vertex is the number of incident edges



Marshall Shepherd, https://slideplayer.com/slide/7806012/

Network Analysis

- Vertex importance
- Role discovery
- Information propagation
- Link prediction
- Community detection
- Recommender System



Deep Learning on Graphs

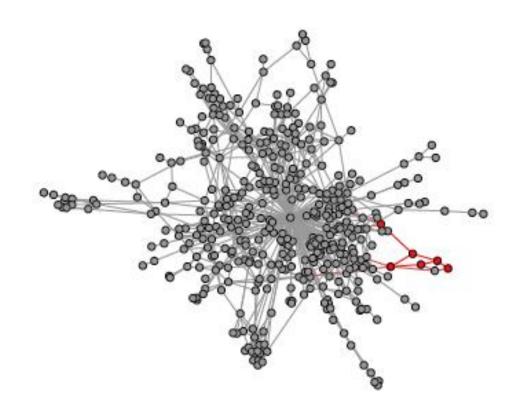
- Graph Recurrent Neural Networks
- Graph Convolutional Networks (GCNs)
- Graph Autoencoders (GAEs)
- Graph Reinforcement Learning
- Graph Adversarial Methods

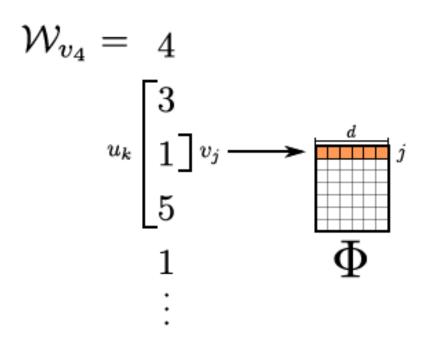
Learning Vertex Features

- Graph Embedding (Random walk + Word embedding)
 - DeepWalk (2014), LINE (2015), node2vec (2016), DRNE (2018),...
- Graph Convolutional Networks (GCNs)
 - Bruna et al. (2014), Atwood & Towsley (2016), Niepert et al. (2016), Defferrard et al. (2016), Kipf & Welling (2017),...

DeepWalk (2014)

Random Walk + Word Embedding





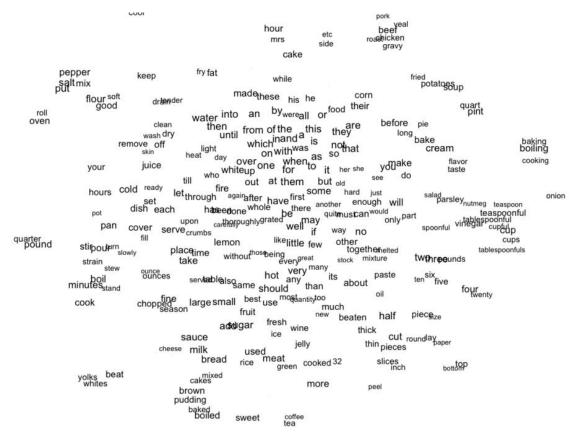
Random Walk Applications

- Economics: Random walk hypothesis
- Genetics: Genetic drift
- Physics: Brownian motion
- Polymer Physics: Idea chain
- Computer Science: Estimate web size
- Image Segmentation

•

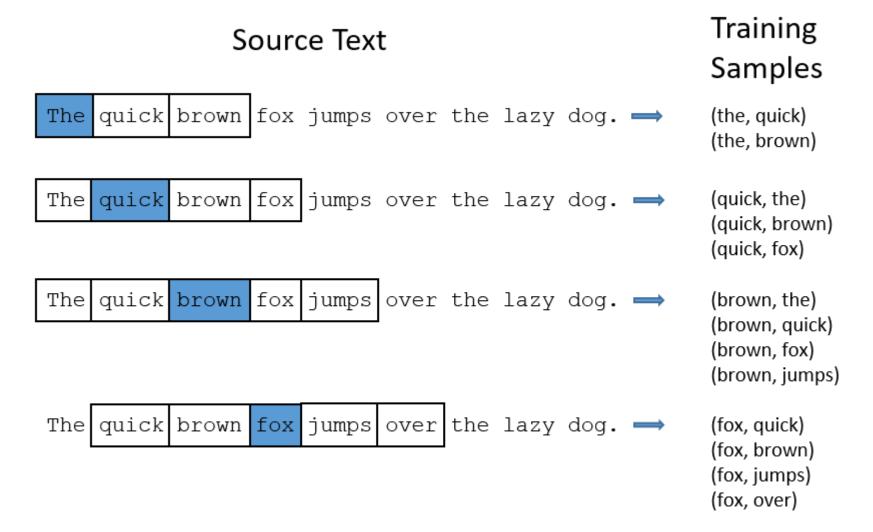
Word2Vec

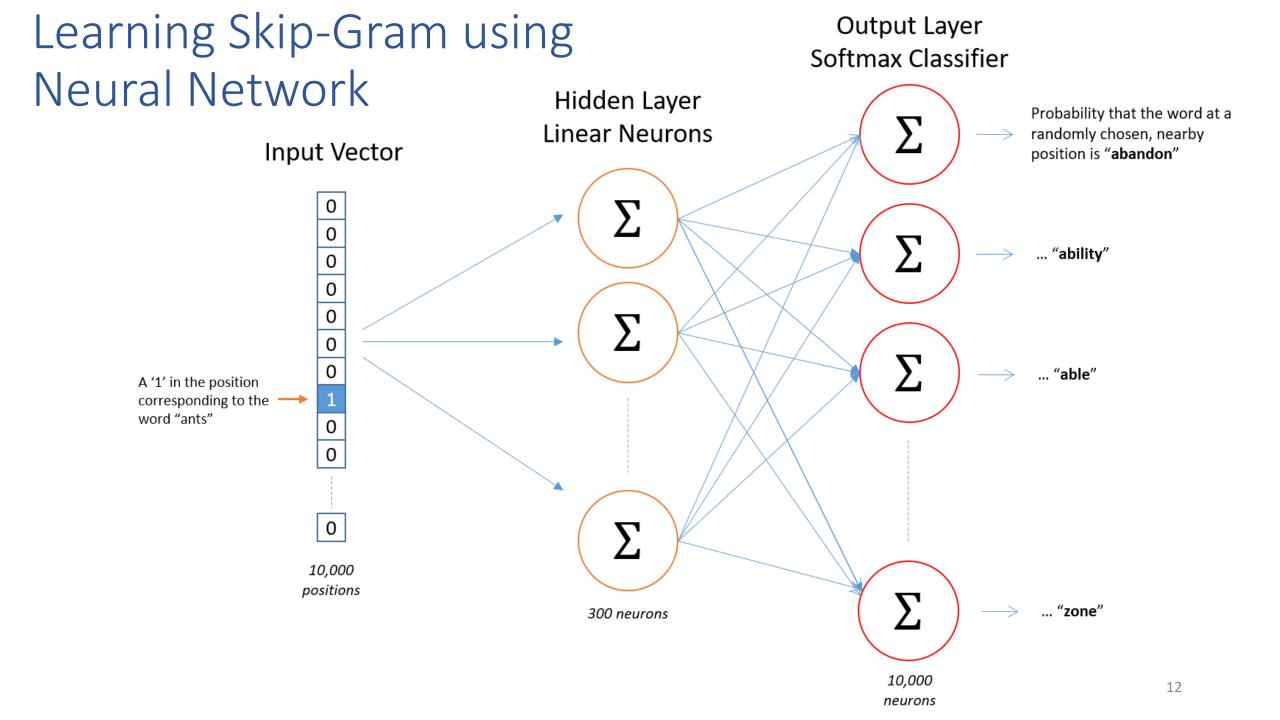
Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed representations of words and phrases and their compositionality." In Advances in neural information processing systems, pp. 3111-3119. 2013.



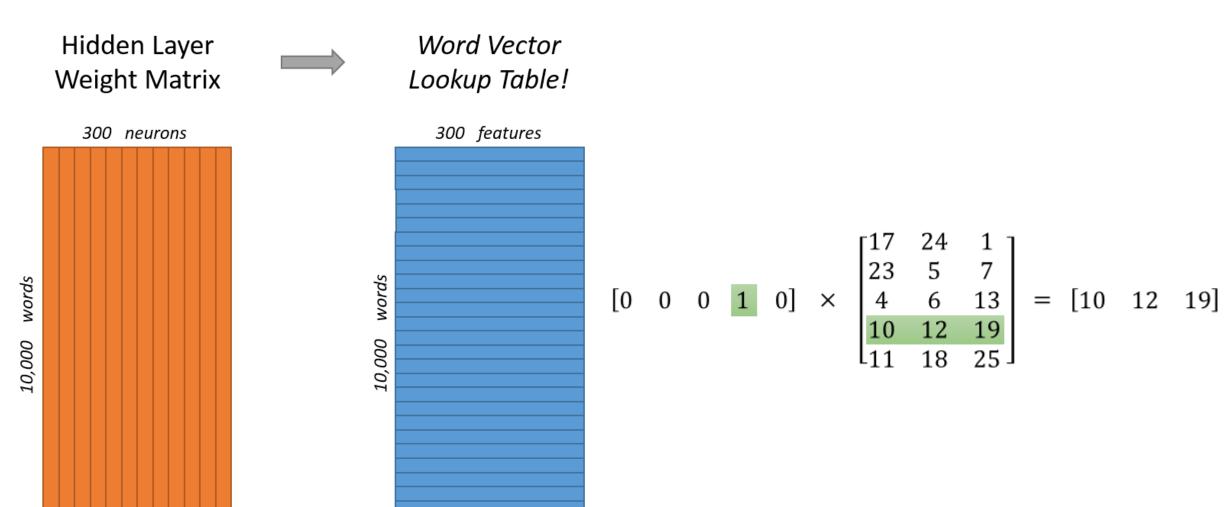
https://towardsdatascience.com/mapping-word-embeddings-with-word2vec-99a799dc9695

Skip-Gram Model

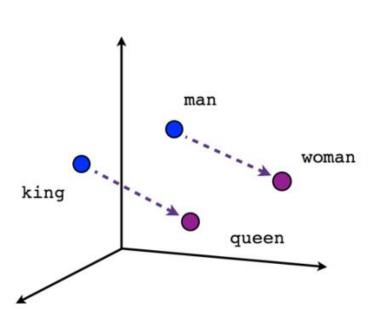


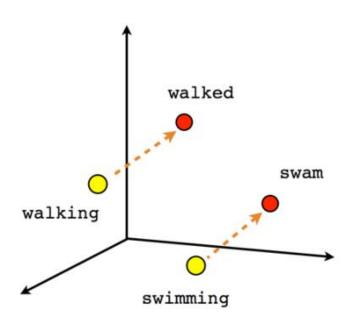


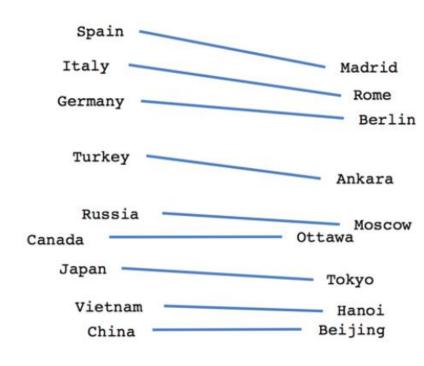
Using Weight of Hidden Neuron as Embedding Vectors



Evaluate Word2Vec







Male-Female

Verb tense

Country-Capital

Vector Addition & Subtraction

- vec("Russia") + vec("river") ≈ vec("Volga River")
- vec("Germany") + vec("capital") ≈ vec("Berlin")
- vec("King") vec("man") + vec("woman") ≈ vec("Queen")

Datasets for Evaluating DeepWalk

• Blogs, Flicker, YouTube

Name	BlogCatalog	Flickr	YouTube
V	10,312	80,513	1,138,499
E	333,983	5,899,882	2,990,443
$ \mathcal{Y} $	39	195	47
Labels	Interests	Groups	Groups

Metric

- Micro-F1
- Macro-F1

Baseline Methods

Spectral Clustering

- Use d-smallest eigenvectors of normalized graph Laplacian of G
- Assume that graph cuts are useful for classification

Modularity

- Select top-d eigenvectors of modular graph partitions of G
- Assume that modular graph partitions are useful for classification

Edge Cluster

Use k-means to cluster the adjacency matrix of G

• wvRN:

Weighted-vote Relational Neighbor

Majority

The most frequent label

Classification Results in BlogCatalog

	% Labeled Nodes	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk	36.00	38.20	39.60	40.30	41.00	41.30	41.50	41.50	42.00
	SpectralClustering	31.06	34.95	37.27	38.93	39.97	40.99	41.66	42.42	42.62
	EdgeCluster	27.94	30.76	31.85	32.99	34.12	35.00	34.63	35.99	36.29
Micro-F1(%)	Modularity	27.35	30.74	31.77	32.97	34.09	36.13	36.08	37.23	38.18
	wvRN	19.51	24.34	25.62	28.82	30.37	31.81	32.19	33.33	34.28
	Majority	16.51	16.66	16.61	16.70	16.91	16.99	16.92	16.49	17.26
	DeepWalk	21.30	23.80	25.30	26.30	27.30	27.60	27.90	28.20	28.90
	SpectralClustering	19.14	23.57	25.97	27.46	28.31	29.46	30.13	31.38	31.78
Macro-F1(%)	EdgeCluster	16.16	19.16	20.48	22.00	23.00	23.64	23.82	24.61	24.92
	Modularity	17.36	20.00	20.80	21.85	22.65	23.41	23.89	24.20	24.97
	wvRN	6.25	10.13	11.64	14.24	15.86	17.18	17.98	18.86	19.57
	Majority	2.52	2.55	2.52	2.58	2.58	2.63	2.61	2.48	2.62

Classification Results in FLICKER

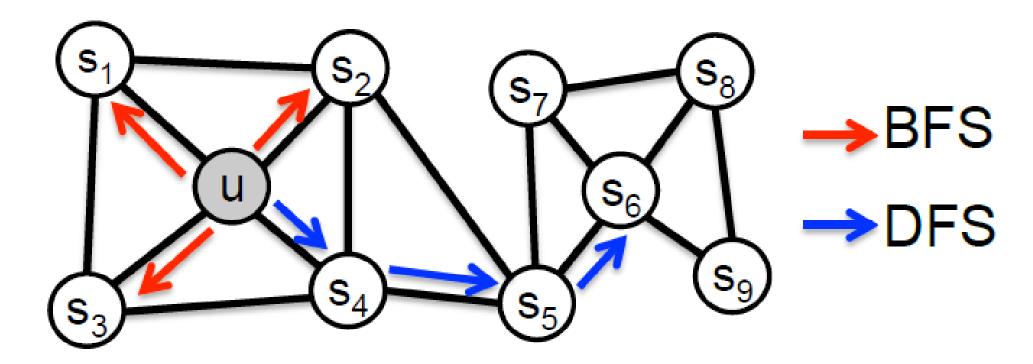
	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DeepWalk	32.4	34.6	35.9	36.7	37.2	37.7	38.1	38.3	38.5	38.7
	SpectralClustering	27.43	30.11	31.63	32.69	33.31	33.95	34.46	34.81	35.14	35.41
Micro-F1(%)	EdgeCluster	25.75	28.53	29.14	30.31	30.85	31.53	31.75	31.76	32.19	32.84
	Modularity	22.75	25.29	27.3	27.6	28.05	29.33	29.43	28.89	29.17	29.2
	wvRN	17.7	14.43	15.72	20.97	19.83	19.42	19.22	21.25	22.51	22.73
	Majority	16.34	16.31	16.34	16.46	16.65	16.44	16.38	16.62	16.67	16.71
	DeepWalk	14.0	17.3	19.6	21.1	22.1	22.9	23.6	24.1	24.6	25.0
	SpectralClustering	13.84	17.49	19.44	20.75	21.60	22.36	23.01	23.36	23.82	24.05
Macro-F1(%)	EdgeCluster	10.52	14.10	15.91	16.72	18.01	18.54	19.54	20.18	20.78	20.85
	Modularity	10.21	13.37	15.24	15.11	16.14	16.64	17.02	17.1	17.14	17.12
	wvRN	1.53	2.46	2.91	3.47	4.95	5.56	5.82	6.59	8.00	7.26
	Majority	0.45	0.44	0.45	0.46	0.47	0.44	0.45	0.47	0.47	0.47

Classification Results in YouTube

	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DeepWalk	37.95	39.28	40.08	40.78	41.32	41.72	42.12	42.48	42.78	43.05
	SpectralClustering										_
Micro-F1(%)	EdgeCluster	23.90	31.68	35.53	36.76	37.81	38.63	38.94	39.46	39.92	40.07
	Modularity										
	wvRN	26.79	29.18	33.1	32.88	35.76	37.38	38.21	37.75	38.68	39.42
	Majority	24.90	24.84	25.25	25.23	25.22	25.33	25.31	25.34	25.38	25.38
	DeepWalk	29.22	31.83	33.06	33.90	34.35	34.66	34.96	35.22	35.42	35.67
	SpectralClustering										_
Macro-F1(%)	EdgeCluster	19.48	25.01	28.15	29.17	29.82	30.65	30.75	31.23	31.45	31.54
	Modularity										
	wvRN	13.15	15.78	19.66	20.9	23.31	25.43	27.08	26.48	28.33	28.89
	Majority	6.12	5.86	6.21	6.1	6.07	6.19	6.17	6.16	6.18	6.19

Node2vec (2016)

- Homophily (communities) vs. Structure Equivalence (node roles)
- Add flexibility by exploring local neighborhoods
- Propose a biased random walk



Random walk with Bias α

• 3 directions: (1) return to previous node, (2) BFS, (3) DFS

$$P(c_{i} = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\alpha_{pq}(t, x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0 \\ 1 & \text{if } d_{tx} = 1 \\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

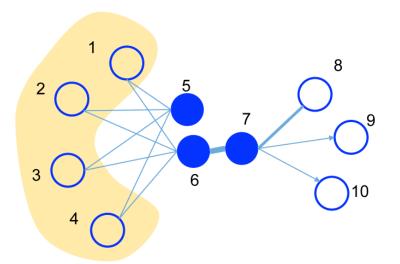
Experimental Results

	BlogCatalog	Protein-Protein Interactions (PPI)	Wikipedia
Vertices	10,312	3,890	4,777
Edges	333,983	76,584	184,812
Groups (Labels)	39	50	40

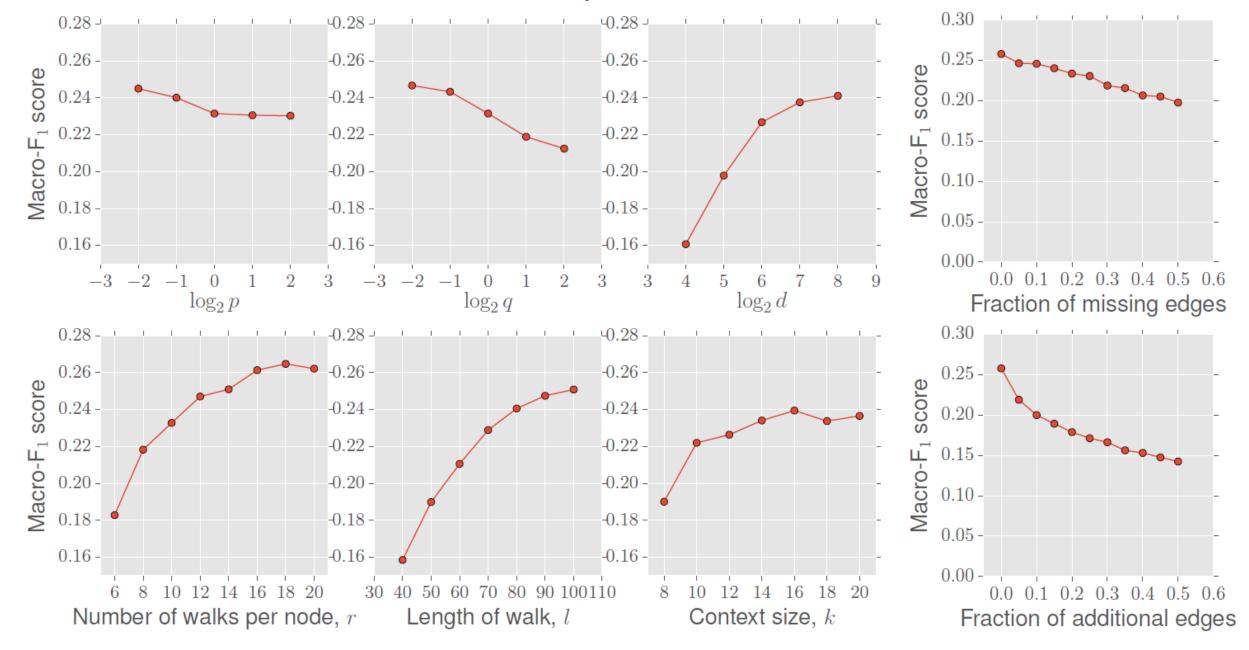
Algorithm	Dataset							
	BlogCatalog	PPI	Wikipedia					
Spectral Clustering	0.0405	0.0681	0.0395					
DeepWalk	0.2110	0.1768	0.1274					
LINE	0.0784	0.1447	0.1164					
node2vec	0.2581	0.1791	0.1552					
node2vec settings (p,q)	0.25, 0.25	4, 1	4, 0.5					
Gain of node2vec [%]	22.3	1.3	21.8					

LINE: Large-scale Information Network Embedding

- J. Tang et al., "LINE: Large-scale Information Network Embedding," WWW, 2015
- Learn d-dimensional feature representations in two separate phases.
- In the first phase, it learns d=2 dimensions by BFS-style over neighbors.
- In the second phase, it learns the next d=2 dimensions by sampling nodes at a 2-hop distance from the source nodes.
 - Vertex 6 and 7 should be embedded closely as they are connected via a strong tie.
 - Vertex 5 and 6 should also be placed closely as they share similar neighbors.

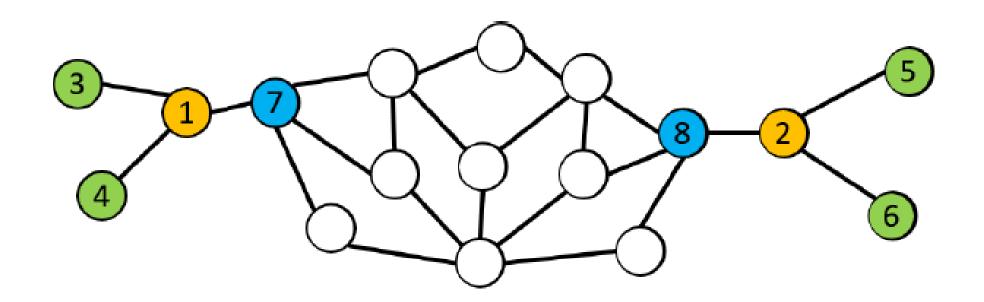


Parameters Sensitivity of node2vec



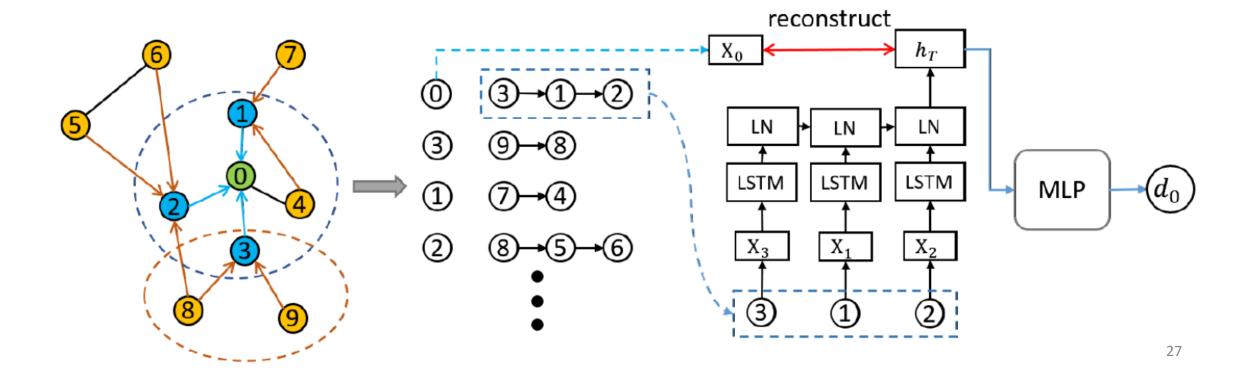
Deep Recursive Network Embedding with Regular Equivalence (2018)

• K. Tu, R. Cui, X. Wang, P. S. Yu, and W. Zhu, "Deep Recursive Network Embedding with Regular Equivalence," *KDD*, 2018



DRNE Brief Summary

- Sample and sort neighboring nodes by their degrees
- Encode nodes using layer-normalized LSTM

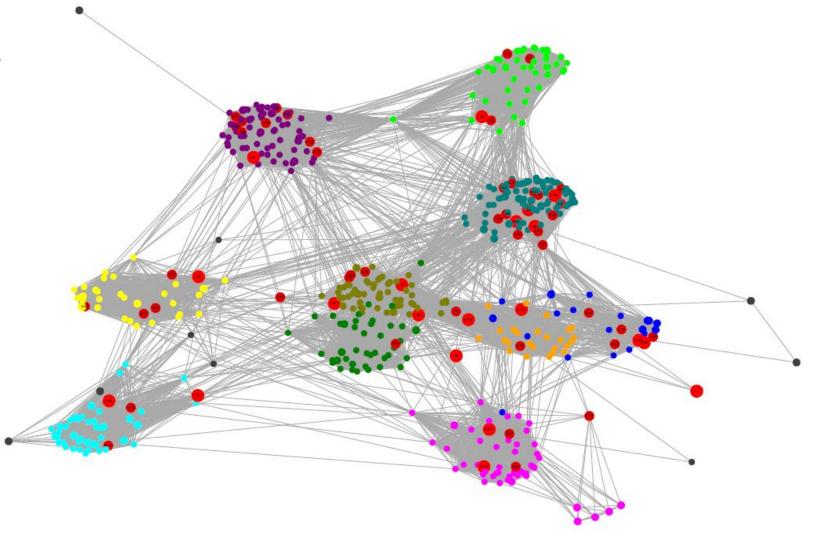


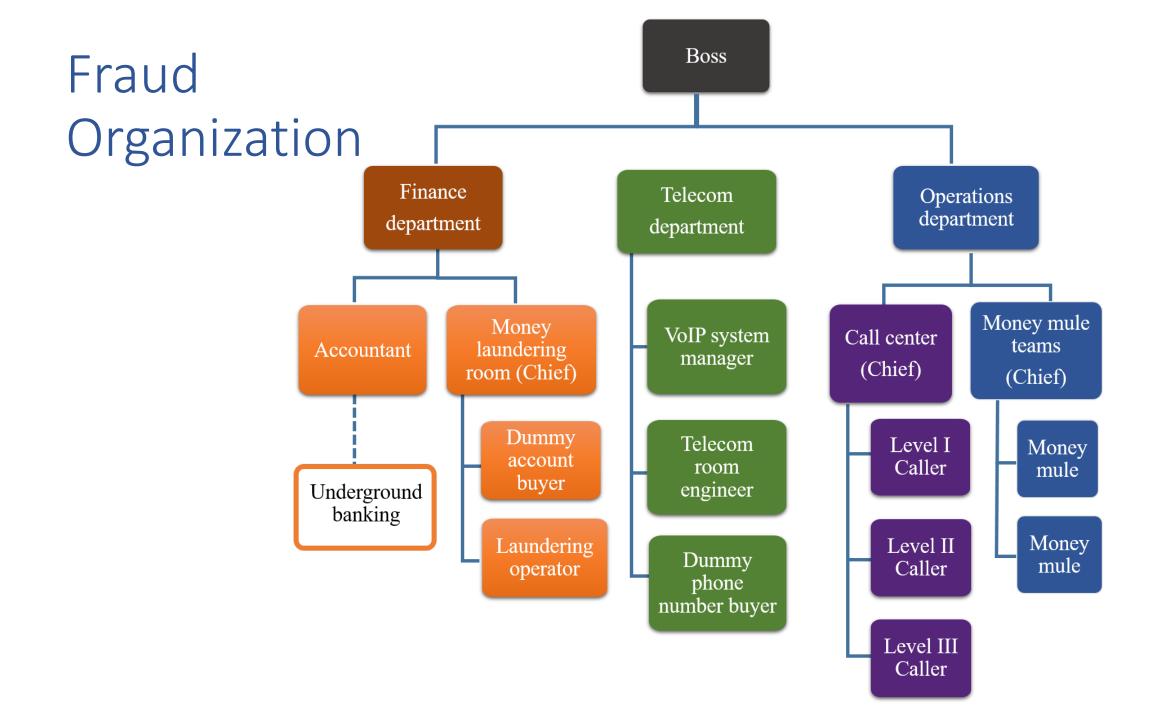
Who is the Boss? Identifying Key Roles in Telecom Fraud Network via Centrality-guided Deep Random Walk

- Summitted to Social Networks (under review)
- Co-work with Criminal Investigation Bureau (CIB) in Taiwan

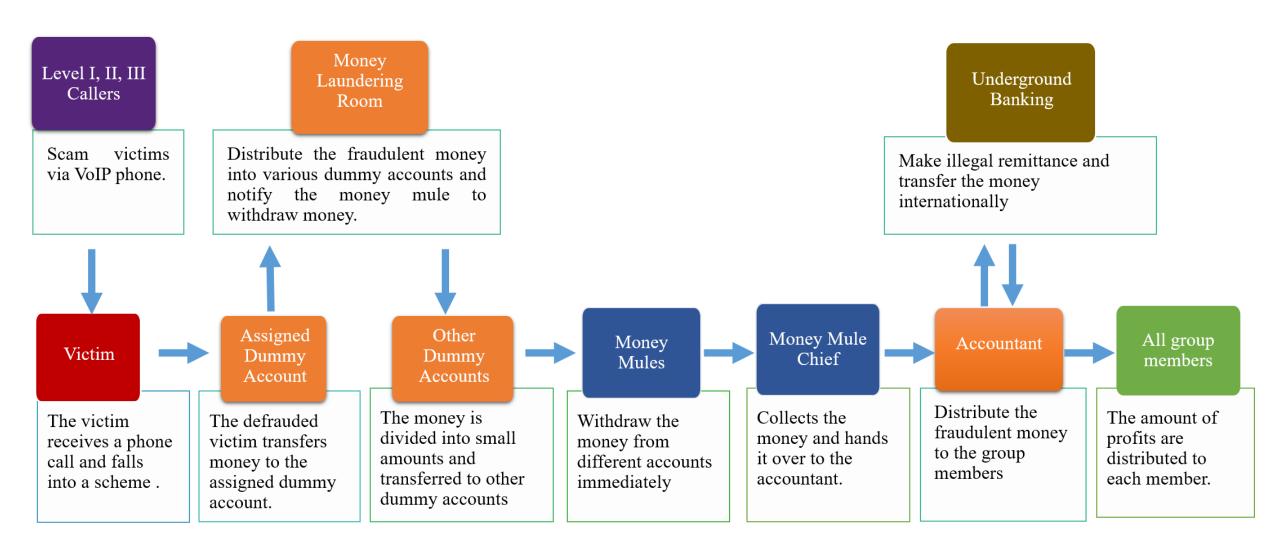
562 Fraudsters in 10 Groups

- Spread out in 17 cities of 4 countries
- Linked via Cooffending records and flights



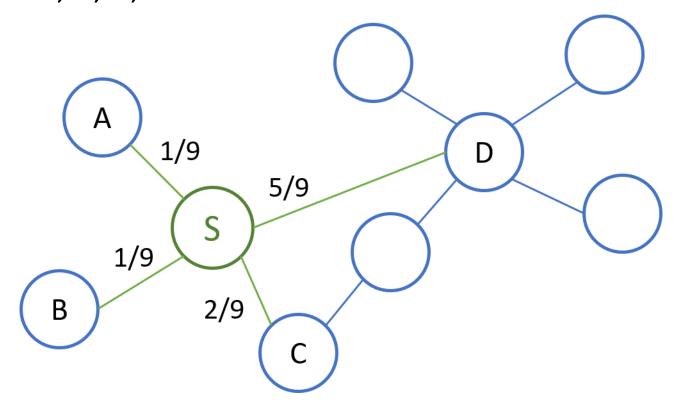


Telecom Fraud Flow



Centrality-guided Random Walk

• The neighbors of node S are nodes A, B, C, and D, which have degree centralities of 1, 1, 2, and 5

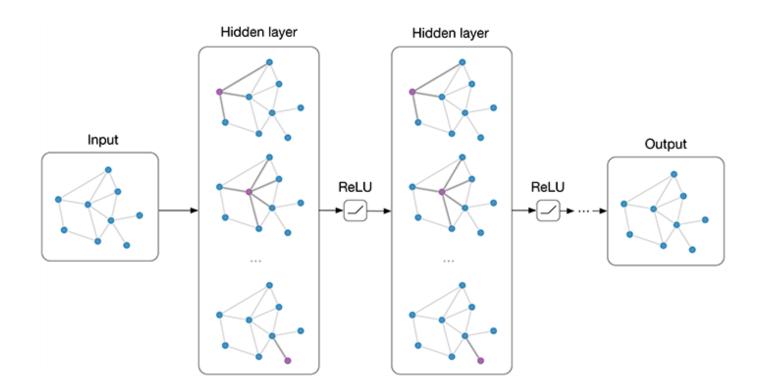


Experimental Results

Test	Degree	EigenVector	Betweenness	PageRank	Closeness	Structure	DRNE	DeepWalk	Node2Vec	Our
Data	Centrality	Centrality	Centrality		Centrality	Hole				Method
Split 1	0.47	0.64	0.67	0.56	0.66	0.52	0.65	0.66	0.71	0.74
Split 2	0.41	0.62	0.68	0.42	0.66	0.59	0.60	0.69	0.74	0.77
Split 3	0.52	0.59	0.69	0.61	0.66	0.47	0.70	0.60	0.71	0.73
Average	0.47	0.62	0.68	0.53	0.66	0.53	0.65	0.68	0.72	0.75

GRAPH CONVOLUTIONAL NETWORKS (GCN)

- Thomas Kipf, 2016 (https://tkipf.github.io/graph-convolutional-networks/)
- Kipf & Welling (ICLR 2017), <u>Semi-Supervised Classification with Graph Convolutional Networks</u>
- Defferrard et al. (NIPS 2016), Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering



GCN Formula

- Given a graph *G=(V,E)*
- Xi for every node i; summarized in a N×D feature matrix $X \in \mathbb{R}^{N \times D}$
 - N: number of nodes
 - D: dimension of input features
- A is the adjacency matrix A of G
- Output $Z \in \mathbb{R}^{N \times F}$, F is the dimension of output features

$$H^{(l+1)} = \sigma(AH^{(l)}W^{(l)})$$

Addressing Limitations

Normalizing the adjacency matrix A via graph Laplacian

$$-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$
, D is the degree matrix

Add self-loop to use its own feature as input

$$-\tilde{A} = A + I$$

$$H^{(l+1)} = \sigma \left(D^{-\frac{1}{2}} \tilde{A} D^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

Graph Convolution for Hashtag Recommendation

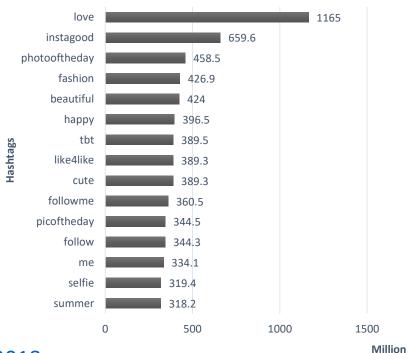
2019.10.28

Student: Yu-Chi Chen(Judy)

Advisors: Prof. Ming-Syan Chen, Kuan-Ting Lai

Image Hashtag Recommendation

- Hashtag => a word or phrase preceded by the symbol # that categorizes the accompanying text
- Created by Twitter, now supported by all social networks
- Instagram hashtag statistics (2017):

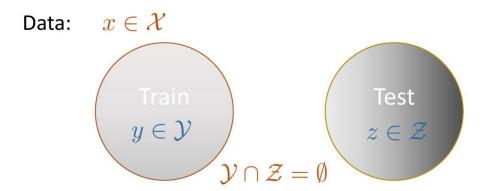


Difficulties of Predicting Image Hashtag

- Abstraction: #love, #cute,...
- Abbreviation: #ootd, #ootn,...
- Emotion: #happy,...
- Obscurity: #motivation, #lol,...
- New-creation: #EvaChenPose,...
- No-relevance: #tbt, #nofilter, #vscocam
- Location: #NYC, #London

Zero-Shot Learning

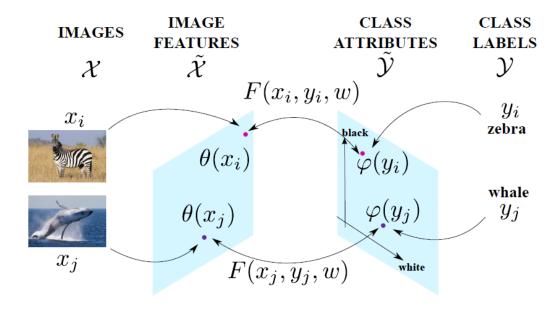
- Identify object that you've never seen before
- More formal definition:
 - Classify test classes Z with zero labeled data (Zero-shot!)

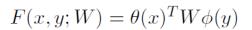


Objective: $f: \mathcal{X} \to \mathcal{Z}$

Zero-Shot Formulation

- Describe objects by words
 - Use attributes (semantic features)

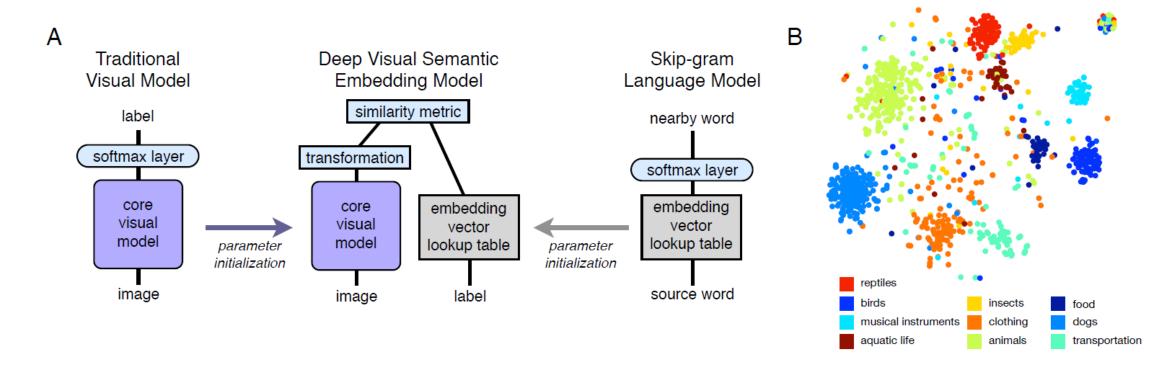




DeViSE - Deep Visual Semantic Embedding

• Google, NIPS, 2013

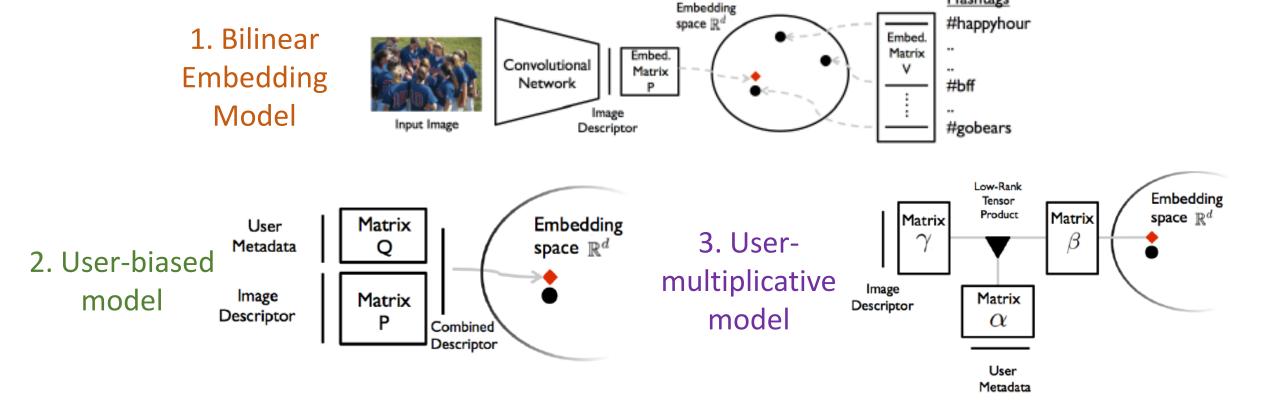
Model	200 labels	1000 labels
DeViSE	31.8%	9.0%
Mensink et al. 2012 [12]	35.7%	1.9%
Rohrbach et al. 2011 [17]	34.8%	-



State-of-the-art: User Conditional Hashtag Prediction for Images

Hashtags

- E. Denton, J. Weston, M. Paluri, L. Bourdev, and R. Fergus, "User Conditional Hashtag Prediction for Images," ACM SIGKDD, 2015 (Facebook)
- Hashtag Embedding: $f(x,y) = \Phi_I(x)^T \Phi_H(y)$
- Proposed 3 models:



Age	Females	Males
	#mcm	#like
	#bestfriend	#1mp
	#love	#throwback
	#lovehim	#squad
	#mce	#wce
13-17	#latepost	#throwback-
	#bestfriends	#thursday
	#boyfriend	#family
	#loveher	#workflow
	#loveyou	#selfie
		#wcm
75	#100happydays	#photoshop-
	#mcm	#express
	#love	#WCW
	#sisters	#goodtimes
	#cousins	#prouddad
12 17	#lovehim	#throwback-
45-47	#latergram	#thursday
	#loveher	#selfie
	#bff	#salute
	#youcampperfect	#blessed
		#zijasummit14
		#familyfirst

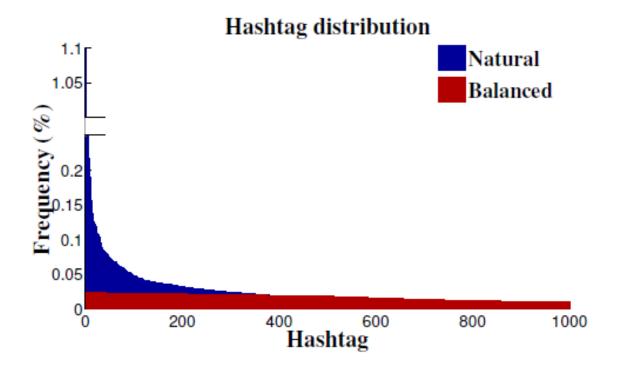
	#WCW	#100happydays
	#mcm	#blessed
	#bestfriend	#goodtimes
Female	#tb	#family
	#ss	#love
	#bestfriends	#photogrid
	#throwback	#latergram
	#latepost	#cousins
	#like	#sundayfunday
	#selfiesunday	#friends
	#wcw	#goodtimes
	#like	#blessed
	#throwback	#love
	#squad	#family
	#tb	#photoshop-
Male	#lmp	#express
Male	#mcm	#photogrid
	#ss	#sundayfunday
	#wce	#friends
	#selfiesunday	#zijasummit14 #prouddad
		" producta

Sydney	Toronto
#melbourne	#toronto
#sydney	#tbt
#australia	#canada
#spring	#vancouver
#beach	#fall
#grandfinal	#throwback
#sunshine	#blessed
#sun	#ilovethiscity
#nz	#vancity
#newzealand	#vscocam
#bali	#tb
#happy	#cntower
#nofilter	#goodmorning
#wellington	#hoco
#springbreak	#montreal
#bondi	#wcw
#afl	#tdot
#thailand	#lateupload
#stkilda	#downtown
#city	#beautiful

Meta data	Possible values
Age	13 - 114
Gender	Male, Female, Unknown
Home City	GPS coordinates
Country	United States, Canada, Great Britain,
	Australia, New Zealand

Facebook's Experiments

- 20 million images
- 4.6 million hashtags, average 2.7 tags per image
- Result



Method	d	K	P@1	R@10	A@10
Freq. baseline	-	-	3.04%	5.63%	9.45%
Bilinear	64	-	7.37%	11.71%	18.69%
Bilinear	128	-	7.37%	11.69%	18.44%
Bilinear	256	-	6.75%	10.84%	17.25%
Bilinear	512	-	6.50%	10.83%	17.17%
User-biased	64	-	9.02%	13.63%	21.88%
User-biased	128	-	9.00%	13.67%	21.83%
User-biased	256	-	8.48%	13.03%	20.96%
User-biased	512	-	7.98%	12.51%	20.05%
3-way mult.	64	50	8.95%	13.66%	21.82%
3-way mult.	64	100	9.03%	13.81%	22.04%
3-way mult.	64	200	8.96%	13.81%	22.05%
3-way mult.	64	300	9.00%	13.74%	21.96%
3-way mult.	64	400	8.96%	13.65%	21.82%

My Work

Introduction

• Goal:

 Given information of IG posts, including images and texts, the goal is to recommend corresponding hashtags.

Main contribution:

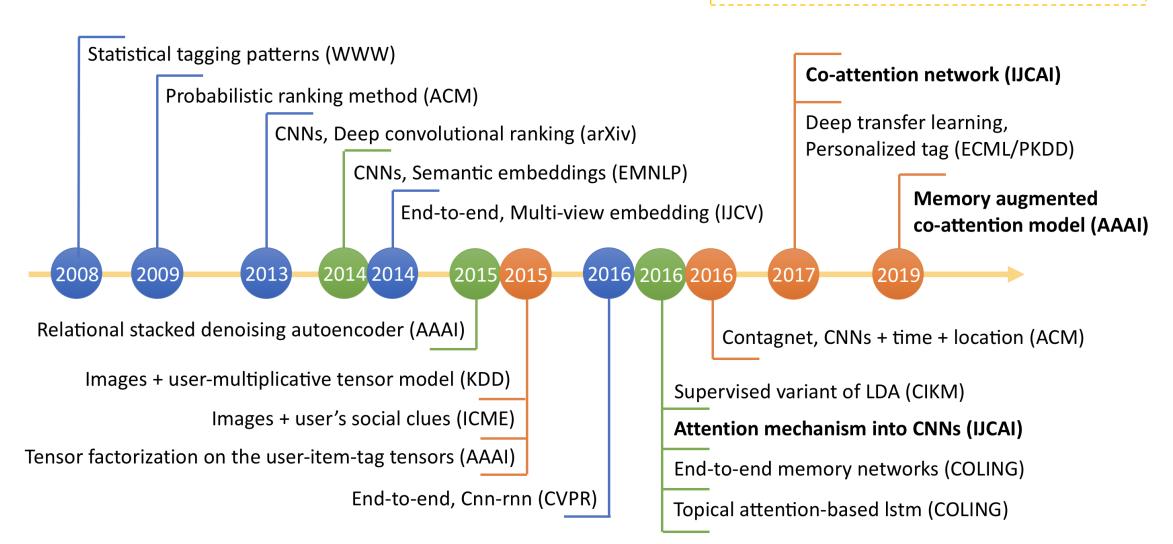
 Use multiple types of input and implement graph convolution network for hashtag recommendation.

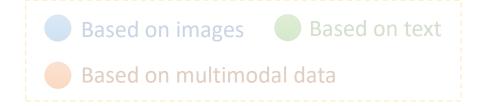
Dataset: MaCon

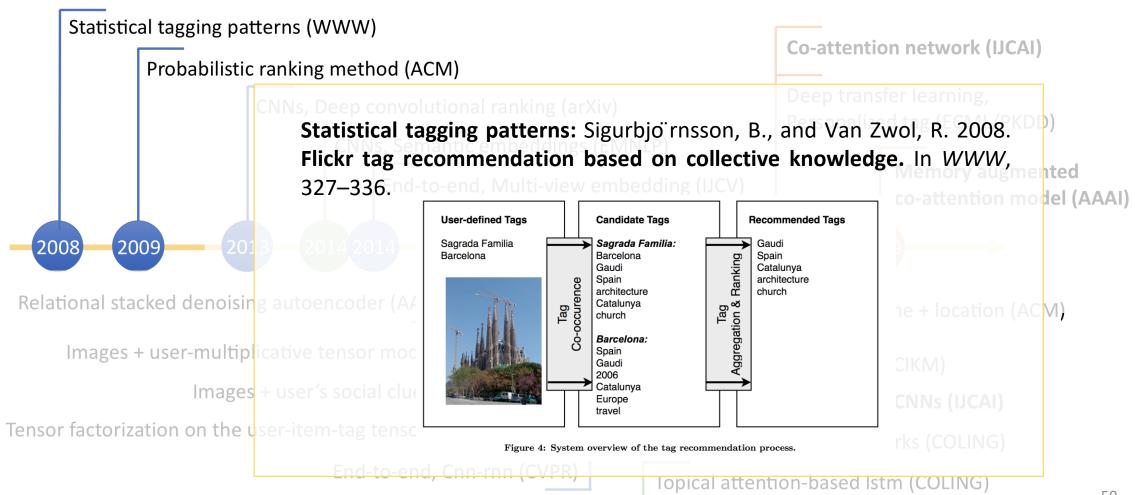
Every post has some attributes: post_id, words, hashtags, user_id, images.

#Posts	#Users	#Hashtags	Ave_p	Ave_h
624,520	7,497	3896	83.3	6.41
			A	

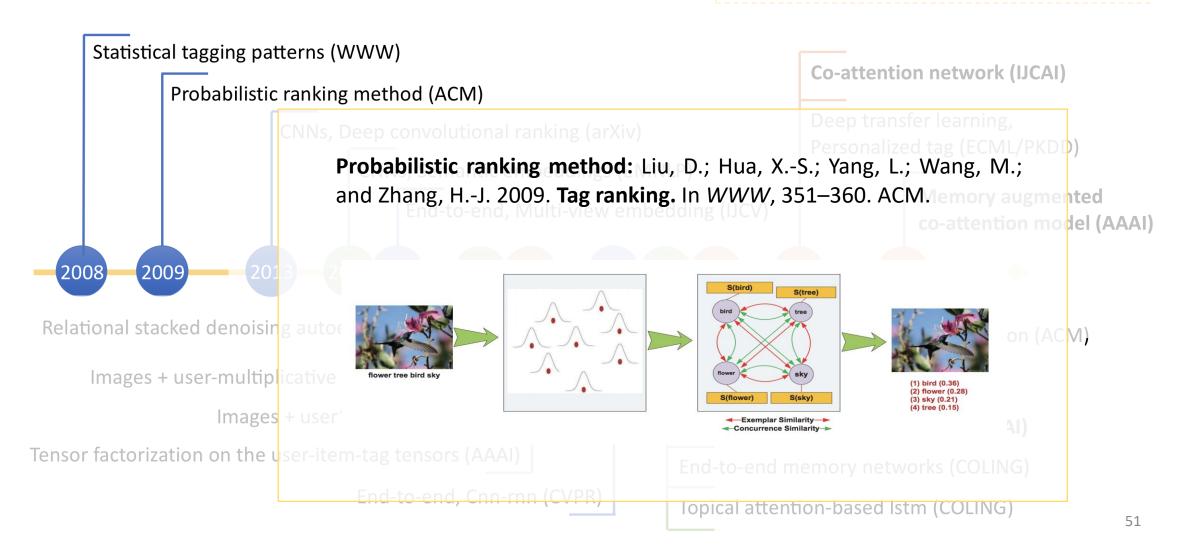
Based on imagesBased on textBased on multimodal data







Based on imagesBased on textBased on multimodal data



Based on imagesBased on text

Statistical tagging patterns (WWW) Co-attention network (IJCAI) Probabilistic ranking method (ACM) Deep transfer learning, CNNs, Deep convolutional ranking (arXiv) Personalized tag (ECML/PKDD) CNNs, Semantic embeddings (EMNLP) Memory augmented End-to-end, Multi-view embedding (IJCV) co-attention model (AAAI) 2014 2014 Relational stacked denoising autoencoder (AAAI) Contagnet, CNNs + time + location (ACM) Images + user-multiplicative tensor model (KDD) Supervised variant of LDA (CIKM) Images + user's social clues (ICME) Attention mechanism into CNNs (IJCAI) Tensor factorization on the user-item-tag tensors (AAAI) End-to-end memory networks (COLING) End-to-end, Cnn-rnn (CVPR) Topical attention-based lstm (COLING)

Based on imagesBased on textBased on multimodal data

Statistical tagging patterns (WWW)

Probabilistic ranking method (ACM)

CNNs, Deep convolutional ranking of the SIGK

CNNs, Semantic embed

End-to-end, Multi-view embedd

2008

2009

2013

2014

2015

2016

2016

Relational stacked denoising autoencoder (AAAI)

Images + user-multiplicative tensor model (KDD)

Images + user's social clues (ICME)

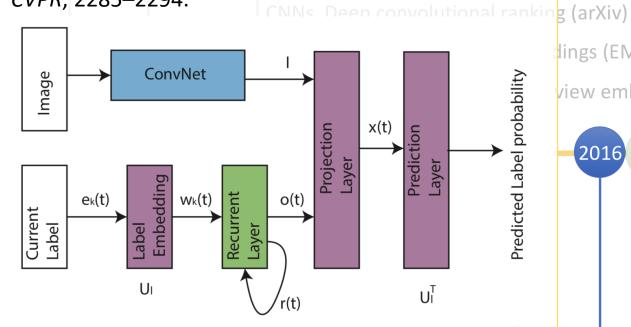
Tensor factorization on the user-item-tag tensors (AAAI)

Images + user-multiplicative tensor model: Denton, E.; Weston, J.; Paluri, M.; Bourdev, L.; Fergus, R. 2015. User conditional hashtag prediction for images. In: Proceedings of the SIGKDD Conference on Knowledge Discovery and Data Mining. Low-Rank **Embedding** Tensor space \mathbb{R}^d **Product** Matrix Matrix **Image** Matrix Descriptor α User Metadata

End-to-end, Cnn-rnn (CVPR)

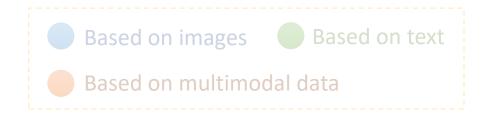
Topical attention-based lstm (COLING)

End-to-end model: Wang, J.; Yang, Y.; Mao, J.; Huang, Z.; Huang, C.; and Xu, W. 2016. Cnn-rnn: A unified framework for multi-label image classification. In CVPR, 2285–2294.



Tensor factorization on the user-item-tag tensors (AAAI)

End-to-end, Cnn-rnn (CVPR)



Co-attention network (IJCAI)

Deep transfer learning, Personalized tag (ECML/PKDD)

> Memory augmented co-attention model (AAAI)

2016

lings (EMNLP)

view embedding (IJCV)

Contagnet, CNNs + time + location (ACM)

Supervised variant of LDA (CIKM)

Attention mechanism into CNNs (IJCAI)

End-to-end memory networks (COLING)

Topical attention-based lstm (COLING)

Attention mechanism into CNNs: Gong, Y., and Zhang, Q. 2016. **Hashtag recommendation using attention-based convolutional neural network.** In *IJCAI*, 2782–2788.

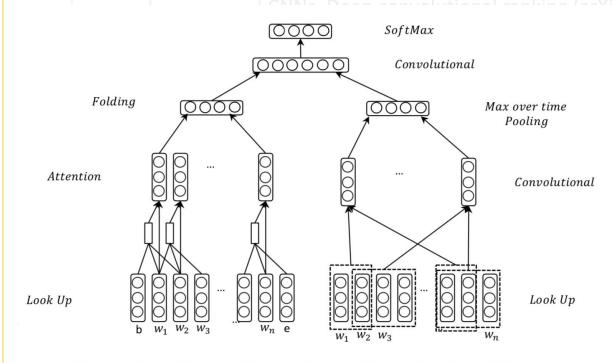
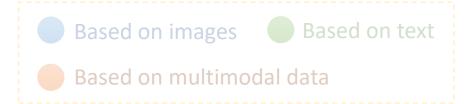
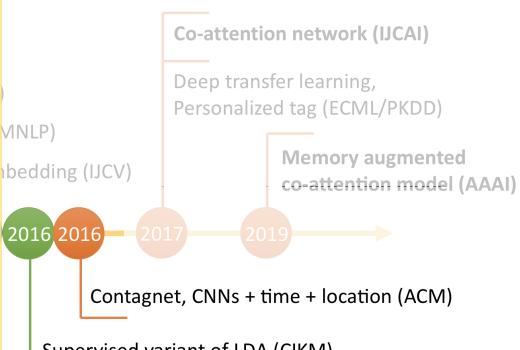


Figure 1: The architecture of the attention-based Convolutional Neural Network





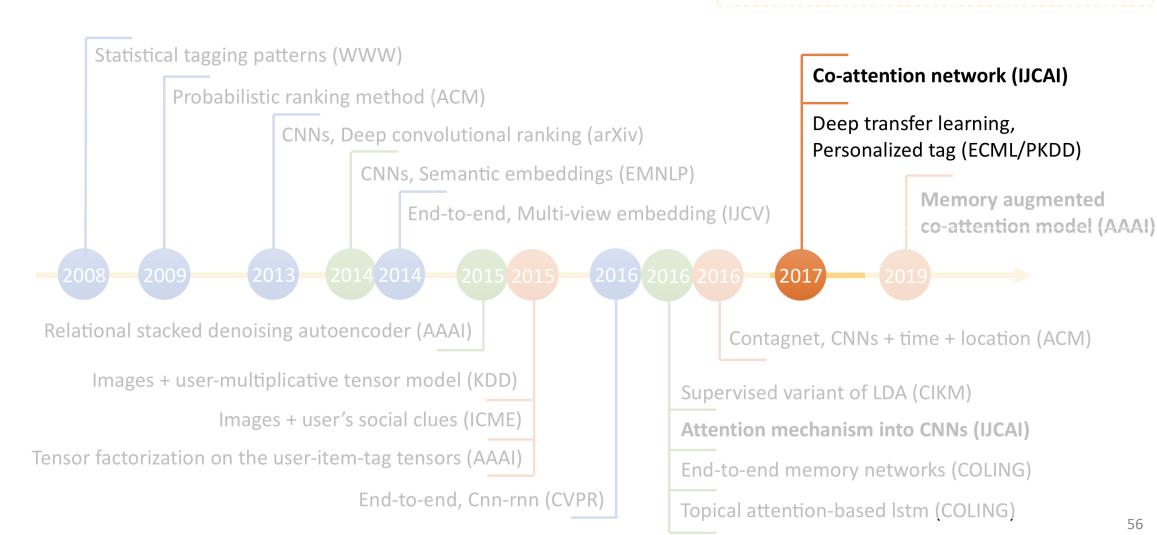
Supervised variant of LDA (CIKM)

Attention mechanism into CNNs (IJCAI)

End-to-end memory networks (COLING)

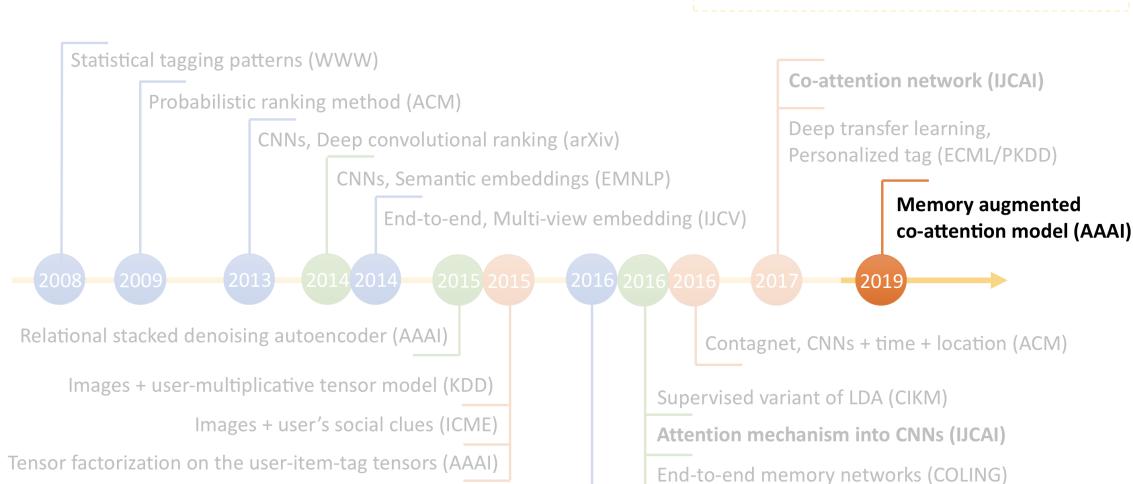
Topical attention-based lstm (COLING)

Based on images Based on text Based on multimodal data



Based on imagesBased on text

Topical attention-based lstm (COLING)



End-to-end, Cnn-rnn (CVPR)

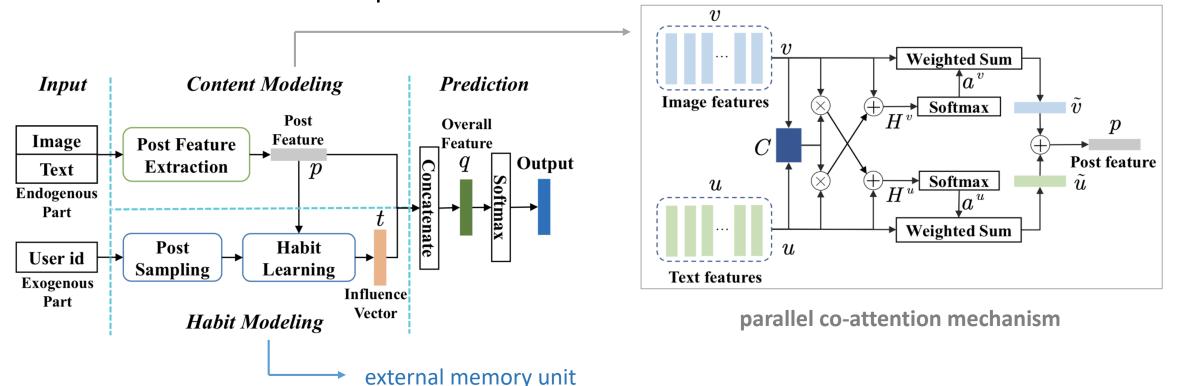
57

Hashtag Recommendation for Photo Sharing Services

Suwei Zhang¹, Yuan Yao¹, Feng Xu¹, Hanghang Tong², Xiaohui Yan³, Jian Lu¹

¹State Key Laboratory for Novel Software Technology, Nanjing University, China
²Arizona State University, USA ³Poisson Lab, Huawei Technologies, China
zsw@smail.nju.edu.cn, {y.yao, xf, lj}@nju.edu.cn, hanghang.tong@asu.edu, yanxiaohui2@huawei.com

- 2019 AAAI. Memory Augmented CO-attentioN model (MACON)
- Multi-label classification problem



Dataset: MaCon

• Every post has some attributes: post_id, words, hashtags, user_id, images (40G).

#Posts	#Users	#Hashtags	Ave_p	Ave_h
624,520	7,497	3896	83.3	6.41

Paper: (from 2019 AAAI)

Hashtag Recommendation for Photo Sharing Services

Suwei Zhang¹, Yuan Yao¹, Feng Xu¹, Hanghang Tong², Xiaohui Yan³, Jian Lu¹

¹State Key Laboratory for Novel Software Technology, Nanjing University, China

²Arizona State University, USA

³Poisson Lab, Huawei Technologies, China

zsw@smail.nju.edu.cn, {y.yao, xf, lj}@nju.edu.cn, hanghang.tong@asu.edu, yanxiaohui2@huawei.com

• 2019 CVPR

Learning Context Graph for Person Search

Yichao Yan^{1,2,3,4*} Qiang Zhang^{1*} Bingbing Ni^{1†}
Wendong Zhang² Minghao Xu¹ Xiaokang Yang²

¹Shanghai Jiao Tong University, China

²MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China

⁴ Inception Institute of Artificial Intelligence, UAE

{yanyichao, zhangqiang2016, nibingbing, diergent, xuminghao118, xkyang}@sjtu.edu.cn

- Person search (end-to-end human detection + multi-part feature learning)
- **Build a graph** to learn global similarity between two individuals considering context information

³ Tencent YouTu Lab, China

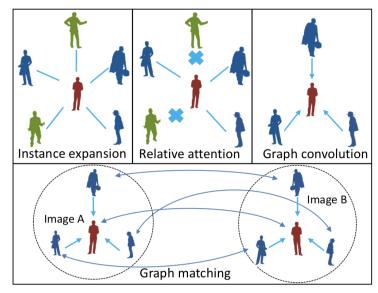
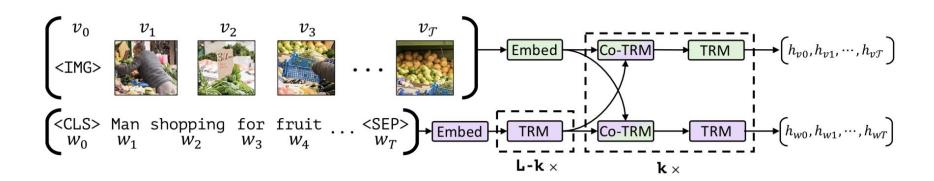


Figure 1. Illustration of the proposed framework.

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

Jiasen Lu¹, Dhruv Batra^{1,2}, Devi Parikh^{1,2}, Stefan Lee^{1,3}¹Georgia Institute of Technology, ²Facebook AI Research, ³Oregon State University

- Vilbert (short for Vision-and-Language BERT)
- Extend BERT to jointly represent images and text
- Co-attentional transformer layers



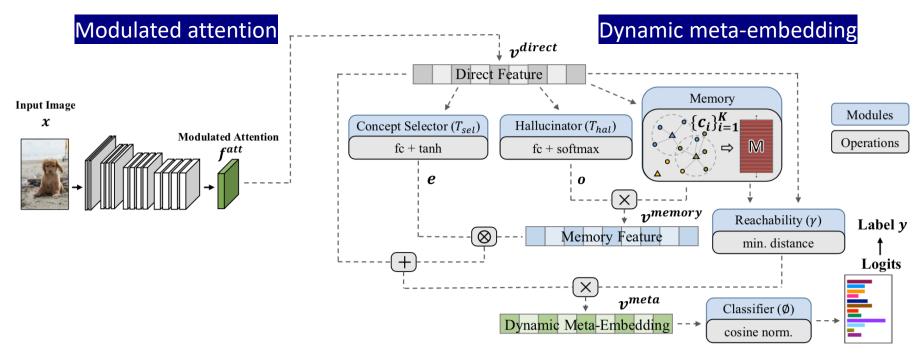
Large-Scale Long-Tailed Recognition in an Open World

Ziwei Liu^{1,2*} Zhongqi Miao^{2*} Xiaohang Zhan¹ Jiayun Wang² Boqing Gong^{2†} Stella X. Yu²

¹ The Chinese University of Hong Kong ² UC Berkeley / ICSI

{zwliu,zx017}@ie.cuhk.edu.hk, {zhongqi.miao,peterwq,stellayu}@berkeley.edu, bqong@outlook.com

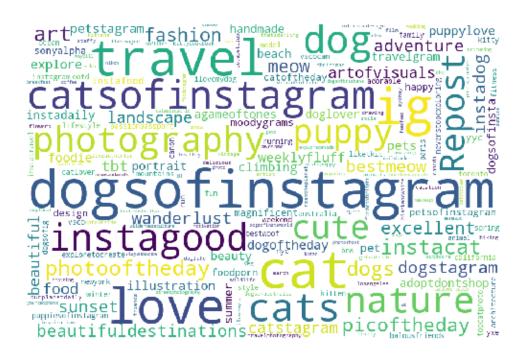
- 2019 CVPR
- OLTR (Open Long-Tailed Recognition): Handle imbalanced classification, few-shot learning, and open-set recognition in one integrated algorithm

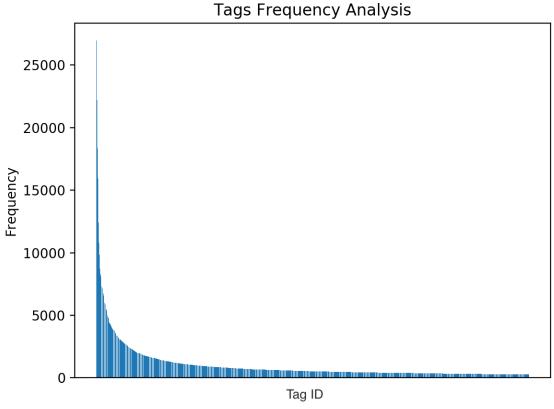


My Work

Dataset: MaCon

- Analysis of dataset
 - According to hashtag frequency

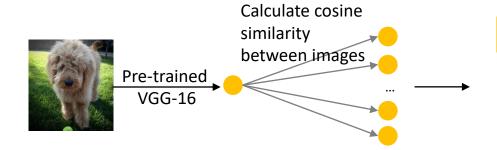




3.1 Model Overview



3.2 Pairwise Relationship Generating



Relation map of image:

$$I_{ij} = \begin{cases} 1 & \text{,if } i \neq j \text{ and } similarity(img_i, img_j) > \tau \\ 0 & \text{,otherwise} \end{cases}$$

We use the threshold τ to filter image-pairs which have low similarity.

Relation map of user:

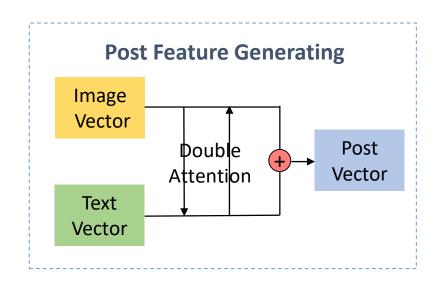
$$U_{ij} = \begin{cases} 1 & \text{if } i \neq j \text{ and the user of } post_i \text{ and } post_j \text{ are the same} \\ 0 & \text{otherwise} \end{cases}$$

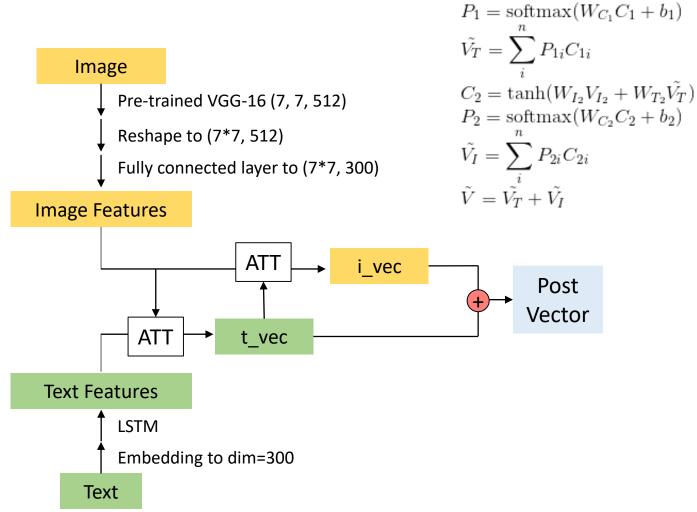
 α =1 has the best performance

When alpha become close to 1, it seems to consider more about the relation between images.

$$W_{ij} = \begin{cases} \alpha I_{ij} + (1 - \alpha)U_{ij} & , \text{ if } i \neq j \\ 0 & , \text{ otherwise} \end{cases}$$

3.3 Post Feature Generating

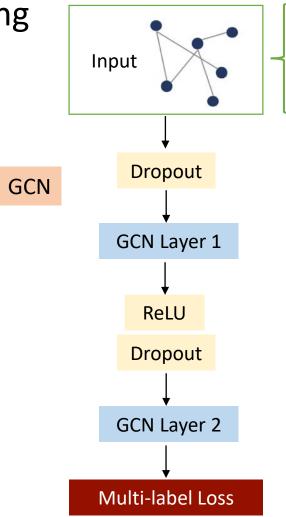


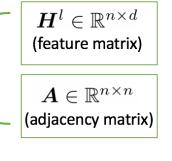


 $C_1 = \tanh(W_I V_I + W_T V_T)$

3.4 Tag Propagation Learning

Tag Propagation Learning



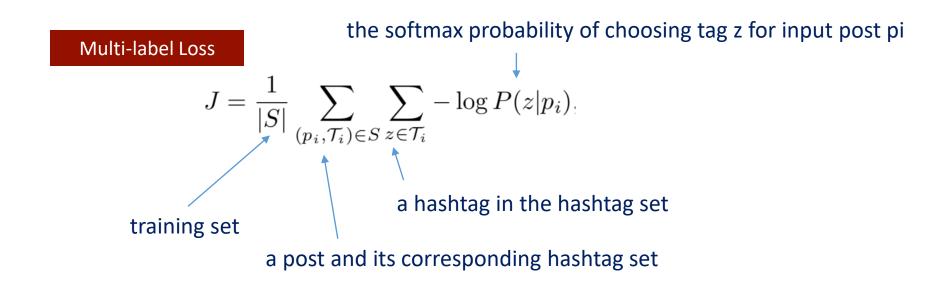


After employing the convolutional operation:

$$m{H}^{l+1} = h(\widehat{m{A}} m{H}^l m{W}^l)$$
 \uparrow
 $\widehat{m{A}} \in \mathbb{R}^{n imes n}$
 $m{W}^l \in \mathbb{R}^{d imes d'}$
the normalized version transformation matrix of correlation matrix A. to be learned.
$$h(): \text{Non-linear operation. (ex. ReLU)}$$

3.5 Training

• The training objective function:



4.1 Evaluation Metrics

Precision(P)	Recall(R)	F1-score(F1)
--------------	-----------	--------------

- Recall@K: The recall value while K candidate hashtags are recommended for each posts.
- Generally, Recall(R) is relatively more important for this performance evaluation.

4.2 Implementation Details

- Implementation: Keras
 - Optimizer = sgd
 - Epochs = 200^{300}
 - Batch_size = #nodes
- Training : Testing = 9:1

4.3 Dataset

#Posts	#Users	#Hashtags	Ave_p	Ave_h
624,520	7,497	3896	83.3	6.41

- MaCon (Zhang et al. 2019):
 - Every post has some attributes such as post_id, words, hashtags, user_id, images.
- Sub-dataset that is used for the following experiments

	Sub-1	Sub-2	Sub-3
Node number	11,607	25,259	58,665
Edge Number	68,029	165,392	165,238
Tag Frequency	Top 50	Top 100	Tag 200
Length of Tags per posts	7~10	7~10	5~8

4.4 Experimental Results

4.4.1 Comparisons with State-of-the-Arts

Method	(Size of dataset: 11,607)			(Size of dataset: 25,259) (Size of dataset: 58,665				58,665)	
Method	P @10	R @10	F1 @10	P @10	R @10	F1 @10	P @10	R @10	F1 @10
1-layer DNN (image + text)	0.326	0.409	0.362	0.439	0.537	0.481	TBD	TBD	TBD
Co-Attention (CoA)	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MaCon (ATT + user habit)	0.325	0.413	0.363	0.218	0.267	0.239	0.103	0.168	0.127
ATT (my ATT) + GCN	0.357	0.448	0.396	0.453	0.554	0.496	0.259	0.416	0.317

- 1-layer DNN: Word embedding + LSTM + DNN
- Co-Attention(CoA) [Zhang et al.2017]
- MaCon [Zhang et al. 2019]

4.4 Experimental Results

4.4.2 Ablation Studies

Effects of Attention and GCN Module

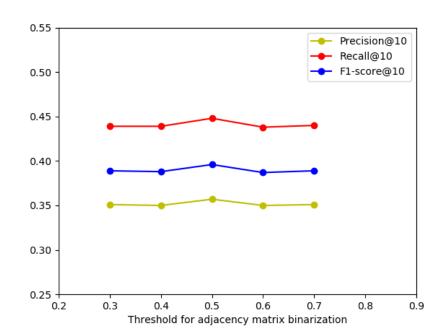
Method	(Size of dataset: 11,607 posts)		
	P @10	R @10	F1 @10
GCN only	0.328	0.409	0.363
ATT only	0.289	0.361	0.320
ATT (my ATT) + GCN	0.357	0.448	0.396

4.4 Experimental Results

4.4.2 Ablation Studies

Effects of different threshold value τ (in calculating image similarity for adjacency matrix binarization)

Threshold	(Size of dataset: 11,607 posts)			
τ	P@10	R @10	F1 @10	
0.3	0.351	0.439	0.389	
0.4	0.350	0.439	0.388	
0.5	0.357	0.448	0.396	
0.6	0.350	0.438	0.387	
0.7	0.351	0.440	0.389	



4.4 Experimental Results

4.4.2 Ablation Studies

 α =1 has the best performance

Effects of different α for final relation matrix

$$W_{ij} = \begin{cases} \alpha I_{ij} + (1 - \alpha)U_{ij} &, \text{ if } i \neq j \\ 0 &, \text{ otherwise} \end{cases}$$

$$W_{ij} = \begin{cases} \alpha I_{ij} + (1 - \alpha)T_{ij} & , \text{ if } i \neq j \\ 0 & , \text{ otherwise} \end{cases}$$

[Adding user information]

(Size of dataset: 11,607 posts) α P @10 R @10 F1 @10 0.5 0.348 0.436 0.386 0.9 0.353 0.443 0.391 0.357 0.448 0.396

[Adding word information]

α	(Size of dataset: 11,607 posts)			
	P @10	R @10	F1 @10	
0.5	0.350	0.438	0.388	
0.8	0.351	0.440	0.389	
1	0.357	0.448	0.396	

References

- Kipf & Welling (ICLR 2017), <u>Semi-Supervised Classification with Graph Convolutional Networks</u>
- Defferrard et al. (NIPS 2016), <u>Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering</u>
- https://slideplayer.com/slide/7806012/
- https://towardsdatascience.com/mapping-word-embeddings-with-word2vec-99a799dc9695
- http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- https://www.tensorflow.org/tutorials/representation/word2vec
- B. Perozzi, R. Al-Rfou, and S. Skiena, "DeepWalk: Online Learning of Social Representations," KDD, 2014
- A. Grover and J. Leskovec, "node2vec: Scalable Feature Learning for Networks," KDD, 2016
- K. Tu, R. Cui, X. Wang, P. S. Yu, and W. Zhu, "Deep Recursive Network Embedding with Regular Equivalence," *KDD*, 2018