e
ot ¢

R
» .

1
- .
Y g parEE

Mty
Y st ampesit
PSR LU s VAN
vrano et D 1)

SRV ’
T onied NP ek
AL AUTENL T A

.o
70 PR AAAEL LN LR

TN SNy N
SOTATED 1L

BT
bl A% FETTIOWTL A
LR FANS Lami e
L L T "I ise
LARTLEES [T
P ¢
S e)
.',. S LR
-
", LT TR e
’
e LTI
. g .
.\.r-cyl,",..: » g

L] "'l--‘
N

Model-based Learning

* Learn a model from

, Model-based
eXperlence e Tabular learning
* Plan value function ° MCTree Search

(and/or policy) from
model

l!olicy-

based

Policy
Gradient

Model-based RL

value/policy

acting

planning

model experience

7

model
learning

Pros and Cons of Model-based RL

Advantages Disadvantages

* Learn model efficiently by ¢ First learn a model, then
supervised learning construct a value function
methods —Two sources of

e Can reason about model approximation error
uncertainty

What is a Model?

* Representation of an MDP (S, 4, P, R) parameterized by 7
e Assume state space S and action space A are known

* Amodel M = (P, R,)) represents state transitions and rewards:

-

St1 ~ Py(St+1 | St. At)
F\)r*l = R(Rr*l ‘ Sr' At:)

* Assume conditional independence between state transitions and
rewards

P[St+1, Rex1 | St At] = P [Se41 | St At PRes1 | St, Adl

Model Learning

* Goal: estimate model M, from experience 15,.A1.R

* A Supervised learning problem!
51.A1 = R». S,
S:. /—\3 —2 /:\‘)3. Sz,

ST-a;AT=1 = RryS7
e Learning s,a — 7 is a regression problem
* Learning s,a — s’ is a density estimation problem

.\l LR

(
.J\)

Examples of Models

* Table Lookup Model

* Linear Expectation Model

* Linear Gaussian Model

* Gaussian Process Model

* Deep Belief Network Model

Table Lookup Model

* Count visits N(s, a) to each state action pair

.
a o]‘ o N
P2, = V(s 3) ; 1(S:, At, Se41 = s.a.5)
A 1 .
Rg — N(S a.) Z I(St At = S, é?)Rt

1
—

t

* Another method: Sample Memory
— Record experience tuple: (S¢, A¢, Rer1, Si+1)
— To sample model, randomly pick tuple matching (S¢, 4¢, -,)

AB Example

e Two states A;B; no discounting; 8 episodes of experience
A 0,B,0

B, 1

B, 1

B, 1 r=10
5,1 @ 100%
B, 1

B, 1

B, 0 D

Construct a table lookup model from the experience

Sample-Based Planning

e Use the model only to generate samples

* Sample experience from model
Sr*l o ‘P.;.'(St*l ‘ St-At)
Rt——l = 'R,,‘,.(: Rt—-l | St- At‘)
* Apply model-free RL to samples
— Monte-Carlo control

— Sarsa
— Q-learning

 Sample-based planning methods are often more e cient

Back to the AB Example

e Construct a table-lookup model from real experience
* Apply model-free RL to sampled experience

Real experience Sampled experience

A 0, B, 0 B, 1
3, 1 B0
B, 1 B 1
3, 1 A, 0, B, 1
3, 1 B, 1
3, 1 A, 0, B, 1
3, 1 B, 1
3, 0 B, O

e.g. Monte-Carlo learning: V(A)=1.V(B) =0.75

Planning with an Inaccurate Model

* Model-based RL is only as good as the estimated model

* When the model is inaccurate, planning process will
compute a suboptimal policy
1. when model is wrong, use model-free RL
2. reason explicitly about model uncertainty

Integrating Learning and Planning

e Model-Free RL

— No model
— Learn value function (and/or policy) from real experience

* Model-Based RL (using Sample-Based Planning)
— Learn a model from real experience
— Plan value function (and/or policy) from simulated experience

* Dyna
— Learn a model from real experience

— Learn and plan value function (and/or policy) from real and simulated
experience

Dyna: Integrated Planning, Acting and Learning

value/policy
acting
planning direct
RL
model experience
model

learning

Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Do forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(¢) Execute action A; observe resultant reward, R, and state, S’
(d) Q(S,A) + Q(S,A) + a|R+ ymax, Q(S',a) — Q(S, A)]
(e) Model(S, A) + R, S’ (assuming deterministic environment)
(f) Repeat n times:
S + random previously observed state
A + random action previously taken in S
R,S" - Model(S, A)
Q(S,A) «+ Q(S,A) + a|R + ymax, Q(S’",a) — Q(S, A)]

Dyna Architecture
/S N\

/’ \
Policy/value functions
V4 \

planning update

direct RL simulated
update experience
P (real j
experience
\Exp ey search
learning control
Model

[Enviro'r'tment]

Dyna-Q on a | | G
Simple Maze ‘l s , -"
* Planning converges 600- ' [| actions
faster |
Steps ' 0 planning steps
per 400~ ’ (direct RL only)
: /
ep|SOde '| /’/ S planning steps
|
'I | '|| // / ?i)//;ﬂanning steps
200"‘ |' '
.“ \' \ I'(/\ | __,,’/
'/ \'\,6* ". aﬁ:’/
W ek R T W)
l“_ \&2- A, SR S—— ———
| I 1 1 " 1
2 10 20 30 40 50

Episodes

Policies Learned by Non-Planning & Planning

WITHOUT PLANNING (n=0)

WITH F'LANNING

—5{1}

'

—

——

+H+

+ |

——

}

G
1
t

1
f

Simulated-based Search

 Forward search
— Select the best action by lookahead
— Build a search tree with the current state s:at the root

— Using a model of the MDP to qul§ ahead
®

Simulated-based Search

* Forward search paradigm using sample-based planning
* Simulate episodes of experience from now with the model
* Apply model-free RL to simulated episodes

Aoy H\@

Model-Carlo Tree Search (Evaluation)

m Given a model M,

m Simulate K episodes from current state s; using current
simulation policy

k k k k1K
{Et: At? Rr—l—lr 'Sr—|—1'1 ST}kzl ™~ lerﬂ

m Build a search tree containing visited states and actions
m Evaluate states Q(s, a) by mean return of episodes from s, a

K T
1
Q(s.a) = N(s.) 7:7: 1(5,, A, = s,a)G, L q-(s. a)

k:]_ u=t

m After search is finished, select current (real) action with
maximum value in search tree

ar = argmax Q(s;. a)
acA

Monte-Carlo Tree Search (Simulation)

m In MCTS, the simulation policy ™ improves
m Each simulation consists of two phases (in-tree, out-of-tree)

m [ree policy (improves): pick actions to maximise Q(S, A)
m Default policy (fixed): pick actions randomly

m Repeat (each simulation)

m Evaluate states Q(S, A) by Monte-Carlo evaluation
m Improve tree policy, e.g. by € — greedy(Q)

m Monte-Carlo control applied to simulated experience

m Converges on the optimal search tree, Q(S,A) — q«(S, A)

Case Study: The Game of Go

* The ancient oriental game of
Go is 2500 years old

e Considered to be the hardest
classic board game

* A grand challenge task for Al

* Traditional game-tree search
has failed in Go

Position Evaluation in Go

m How good is a position s7

m Reward function (undiscounted):

R: = 0 for all non-terminal steps t < T

R, _ 1 if Black wins
=3 0 if White wins

m Policy m = (mg, mw) selects moves for both players

m Value function (how good is position s):

Vr(s) =E;[RT | $ =s] =P[Black wins | § = s]

vi(s) = max rmfn Vr(s)

Monte-Car

Evaluation i

Simulation

Qutcomes

Applying Monte-Carlo Tree Search (1)

Current state —» ¢ Tree Policy

A&

Default Policy

Applying Monte-Carlo Tree Search (2)

Current state —»
Tree Policy

A

Default Policy

Applying Monte-Carlo Tree Search (3)

Current state —» &5

I Tree Policy
&

Default Policy

Applying Monte-Carlo Tree Search (4)

Current state —» £& A

Tree Policy

-

Default Policy

Applying Monte-Carlo Tree Search (1)

Current state —» &&

Tree Policy

-

Default Policy

Advantages of MC Tree Search

* Highly selective best-first search

 Evaluates states dynamically (unlike e.g. DP)

e Uses sampling to break curse of dimensionality

* Works for \black-box" models (only requires samples)
* Computationally efficient and parallelisable

Reference

1. David Silver, Lecture 8: Integrating Learning and Planning

2. Chapter 8, Richard S. Sutton and Andrew G. Barto, “Reinforcement Learning: An
Introduction,” 2"d edition, Nov. 2018

