
Coordinate Rotation DIgital
Rotation(CORDIC)

Speaker: Jia-Ming Lin

Outline

● How to calculate sine and cosine?
● Background of CORDIC
● Calculating sine and cosine efficiently
● Number Representation
● Labs

○ Download
○ Baseline
○ Using CORDIC

2

https://drive.google.com/file/d/1_fijK4diAwLcuPe-5vIgtkOBb48la6p4/view?usp=sharing

How to calculate Sine and Cosine?

● If we know

● How to calculate

● Using rotation, doing five times

3

● Rotation matrix,

● To perform one rotation

How to calculate Sine and Cosine?

cosine

sine

4

How to calculate Sine and Cosine?

● Back to the example

● If we know

● Calculate by using rotation five times

Six matrix multiplication
5

● How many “multiplication units” we need?

○ At least 4

● How many iterations(rotations) we need?

○ Target degree / 10

○ E.g. 6 times in our case

● Can we do better?

○ In terms of less multiplication units and consistent latency

○ Idea of CORDIC is an efficient way to perform a series of rotations

■ No multiplication units and constant iterations

How to calculate Sine and Cosine?

6

Background of CORDIC

7

CORDIC: Background(1/2)

● Consider the rotation matrix

● Using the following trigonometric identities

● Rewrite the rotation matrix

8

CORDIC: Background(2/2)

● Rotation matrix

● If , the rotation can be performed using “shift” and “additions”

● Rotate by
Positive rotation

Negative rotation 9

CORDIC: Example

 = (0<60)?1:-1

Current deg < target deg?

Lookup table: cordic_phase

10

CORDIC: Example

 = (45<60)?1:-1

Current deg < target deg?

Lookup table: cordic_phase

11

CORDIC: Example

 = (45+26.565<60)?1:-1

Current deg < target deg?

Lookup table: cordic_phase

12

Calculate Sine and Cosine efficiently: Procedure

1. Initialize
○ Starting from zero degree, theta = 0,
○ Initial vector = [current_cos = 1,current_sin = 0]
○ Lookup table: cordic_phase
○ Max Iterations

2. j = 0...max_iteration
○ Positive rotate or negative rotate? sigma = (theta < target degree)?
○ Multiply 2^(-j)

■ cos_shift = (current_cos >> j)*sigma
■ sin_shift = (current_sin >> j)*sigma

○ Rotation
■ current_cos = current_cos - sin_shift
■ current_sin = current_sin + cos_shift

○ Current degree, theta = theta + cordic_phase[j]
3. Output [“current_cos”, “current_sin”] * 0.60725

Right shift in HLS

13

● In the final output result, we scaled the vector by a factor 1.64676

○ The cumulative scaling factor

○ When max_iter → infinity,

● To avoid the final normalization, initialize the starting vector as [0.60725, 0]

Calculate Sine and Cosine efficiently: Normalization

14

Number Representation

● Datatype of variables store sin and cos values
○ Floating point:

■ Advantage: accurate in most cases,

● Smallest positive number: 1.175494e-38, Max number: 3.402823466e+38

■ Disadvantage: resource cost

○ Fixed-Point:

■ #include<ap_fixed.h>;
ap_fixed<W, I, Q, O>

■ W: word length, I: bits length of integer value, Q: quantization mode, O: Overflow mode

● Q is default to “Truncation to minus infinity”,

● O is default to “Wrap around”.
15

Number Representation

● Example: ap_fixed<8,4>
○ W = 8, I = 4
○ 8 bits variable, 4 bits representing the integer, 4 bits representing fractional number.

○ (-1*2**3) + 2**1 + 2**0 + 2**(-2)

16

Lab 1: Baseline implementation

● Given

● Using rotation to calculate

○

● Implementation in HLS and generate the report

● Compare the solution
with results from
standard library

● Python code for your
reference

17

Lab 2: Implement CORDIC

● Implement a function to calculate “sin” and “cos” in HLS using CORDIC

○ Calculate

● Generate Report, and compare with Lab 1

○ Resource consumption, Latency, Accuracy

● Change “data_t” to floating point or fixed point

○ Comparing the accuracy and resource consumption

18

