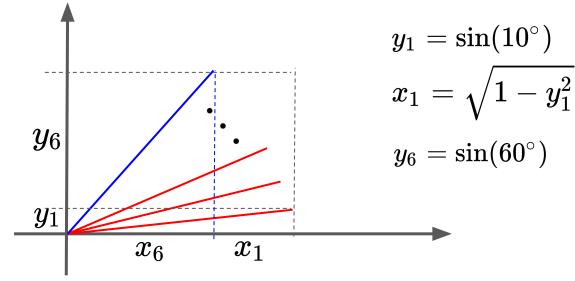
Coordinate Rotation DIgital Rotation(CORDIC)

Speaker: Jia-Ming Lin

Outline

- How to calculate sine and cosine?
- Background of CORDIC
- Calculating sine and cosine efficiently
- Number Representation
- Labs
 - o <u>Download</u>
 - Baseline
 - Using CORDIC

- If we know $\sin(10^\circ)=0.1736$
- How to calculate $\sin(60^\circ)$
- Using rotation, doing five times



• Rotation matrix,

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

• To perform one rotation

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_{i-1} \\ y_{i-1} \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} \qquad \text{sine}$$

aaaina

- Back to the example
- If we know $\sin(10^\circ)=0.1736$
- Calculate $\sin(60^\circ)$ by using rotation five times

$$\begin{bmatrix} \cos(10^{\circ}) & -\sin(10^{\circ}) \\ \sin(10^{\circ}) & \cos(10^{\circ}) \end{bmatrix} \bullet \bullet \bullet \begin{bmatrix} \cos(10^{\circ}) & -\sin(10^{\circ}) \\ \sin(10^{\circ}) & \cos(10^{\circ}) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Six matrix multiplication

- How many "multiplication units" we need?
 - At least 4
- How many iterations(rotations) we need?
 - Target degree / 10
 - E.g. 6 times in our case
- Can we do better?
 - In terms of less multiplication units and consistent latency
 - Idea of CORDIC is an efficient way to perform a series of rotations
 - No multiplication units and constant iterations

Background of CORDIC

CORDIC: Background(1/2)

• Consider the rotation matrix

$$R_i(\theta) = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{bmatrix}$$

• Using the following trigonometric identities

$$\cos(\theta_i) = \frac{1}{\sqrt{1 + \tan^2(\theta_i)}} \qquad \sin(\theta_i) = \frac{\tan(\theta_i)}{\sqrt{1 + \tan^2(\theta_i)}}$$

• Rewrite the rotation matrix

$$R_i = \frac{1}{\sqrt{1 + \tan^2(\theta_i)}} \begin{bmatrix} 1 & -\tan(\theta_i) \\ \tan(\theta_i) & 1 \end{bmatrix}$$

CORDIC: Background(2/2)

• Rotation matrix

$$R_i = \frac{1}{\sqrt{1 + \tan^2(\theta_i)}} \begin{bmatrix} 1 & -\tan(\theta_i) \\ \tan(\theta_i) & 1 \end{bmatrix}$$

• If $tan(\theta_i) = 2^{-i}$, the rotation can be performed using "shift" and "additions"

$$v_i = K_i \begin{bmatrix} 1 & -2^{-i} \\ 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_{i-1} \\ y_{i-1} \end{bmatrix} \qquad K_i = \frac{1}{\sqrt{1+2^{-2i}}}$$

• Rotate by $\pm \theta$.

$$v_i = K_i egin{bmatrix} 1 & -\sigma_i 2^{-i} \ \sigma_i 2^{-i} & 1 \end{bmatrix} egin{bmatrix} x_{i-1} \ y_{i-1} \end{bmatrix} & \sigma_i = 1 & ext{Positive rotation} & \sigma_i = -1 & ext{Negative rotation} & ext{Negative$$

CORDIC: Example $\sin(60^{\circ})$

Lookup table: cordic_phase

$v_i = K_i \begin{bmatrix} 1 & -\sigma_i 2^{-i} \\ \sigma_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_{i-1} \\ y_{i-1} \end{bmatrix}$	i	2^{-i}	Rotating Angle	Scaling Factor	CORDIC Gain
	0	1.0	45.000°	1.41421	1.41421
	1	0.5	26.565°	1.11803	1.58114
	2	0.25	14.036°	1.03078	1.62980
1	3	0.125	7.125°	1.00778	1.64248
$K_i = rac{1}{\sqrt{1 + 2^{-2i}}}$ $x_{-1} = 1, y_{-1} = 0$	4	0.0625	3.576°	1.00195	1.64569
$K_i = \frac{1}{\sqrt{1+2^{-2i}}}$ $w_{-1} = 1, y_{-1} = 0$	5	0.03125	1.790°	1.00049	1.64649
	6	0.015625	0.895°	1.00012	1.64669

$$v_{-1} \rightarrow v_0$$

 $\sigma_0 = (0 < 60)?1:-1$
Current deg < target deg?

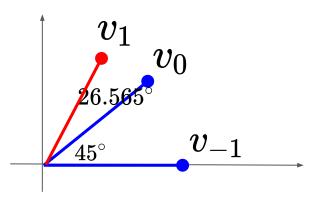
CORDIC: Example $\sin(60^{\circ})$

Lookup table: cordic_phase

Γ 1	$-\sigma_i 2^{-i}] [x_{i-1}]$	i	2^{-i}	Rotating Angle	Scaling Factor	CORDIC Gain
$= K_i \begin{bmatrix} 1 & 0_i 2 \\ \sigma_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_{i-1} \\ y_{i-1} \end{bmatrix} $	0	1.0	45.000°	1.41421	1.41421	
	1	0.5	26.565°	1.11803	1.58114	
		2	0.25	14.036°	1.03078	1.62980
1		3	0.125	7.125°	1.00778	1.64248
$=rac{1}{\sqrt{1+2^{-2i}}} x_{-1}=1, y_{-1}=0$	4	0.0625	3.576°	1.00195	1.64569	
	5	0.03125	1.790°	1.00049	1.64649	
		6	0.015625	0.895°	1.00012	1.64669

$$v_i = K_i \begin{bmatrix} \sigma_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} u_{i-1} \\ y_{i-1} \end{bmatrix}$$
$$K_i = \frac{1}{\sqrt{1+2^{-2i}}} \quad x_{-1} = 1, y_{-1} = 0$$

 $v_0 \rightarrow v_1$ σ_{1} = (45<60)?1:-1 Current deg < target deg?



CORDIC: Example $\sin(60^{\circ})$

Lookup table: cordic_phase

Γ 1	$-\sigma_i 2^{-i} \left[x_{i-1} \right]$	i	2^{-i}	Rotating Angle	Scaling Factor	CORDIC Gain
$v_i = K_i \begin{bmatrix} 1 & -\sigma_i 2 \\ \sigma_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_{i-1} \\ y_{i-1} \end{bmatrix}$	0	1.0	45.000°	1.41421	1.41421	
	1	0.5	26.565°	1.11803	1.58114	
		2	0.25	14.036°	1.03078	1.62980
1		3	0.125	7.125°	1.00778	1.64248
$K_i = \frac{1}{\sqrt{1 + 2 \cdot 2^i}}$	$x_{-1} = 1, y_{-1} = 0$	4	0.0625	3.576°	1.00195	1.64569
$K_i = \frac{1}{\sqrt{1+2^{-2i}}}$ $\omega_{-1} = 1, g_{-1} = 0$	5	0.03125	1.790°	1.00049	1.64649	
		6	0.015625	0.895°	1.00012	1.64669

$$K_i = rac{1}{\sqrt{1+2^{-2i}}} \quad x_{-1} = 1, y_{-1} = 0$$

$$v_1 \longrightarrow v_2$$

 σ_{2} = (45+26.565<60)?1:-1 Current deg < target deg?

$$v_1 v_2 v_0$$

 v_{-1}

Calculate Sine and Cosine efficiently: Procedure

1. Initialize

- \circ Starting from zero degree, theta = 0,
- Initial vector = [current_cos = 1,current_sin = 0]
- Lookup table: cordic_phase
- Max Iterations
- 2. j = 0...max_iteration
 - Positive rotate or negative rotate? sigma = (theta < target degree)?

Right shift in HLS

- Multiply 2^(-j)
 - cos_shift = (current_cos >> j)*sigma
 - sin_shift = (current_sin >> j)*sigma
- Rotation
 - current_cos = current_cos sin_shift
 - current_sin = current_sin + cos_shift
- Current degree, theta = theta + cordic_phase[j]
- 3. Output ["current_cos", "current_sin"] * 0.60725

Calculate Sine and Cosine efficiently: Normalization

- In the final output result, we scaled the vector by a factor 1.64676
 - The cumulative scaling factor

$$K(ext{max_iter}) = \prod_{j=0}^{ ext{max_iter}} K_j$$

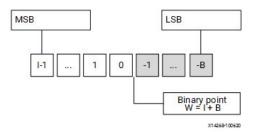
• When max_iter
$$\rightarrow$$
 infinity,

 $K\sim 0.60725$

• To avoid the final normalization, initialize the starting vector as [0.60725, 0]

Number Representation

- Datatype of variables store sin and cos values
 - Floating point:
 - Advantage: accurate in most cases,
 - Smallest positive number: 1.175494e-38, Max number: 3.402823466e+38
 - Disadvantage: resource cost
 - **Fixed-Point**:
 - #include<ap_fixed.h>; ap_fixed<W, I, Q, O>



- W: word length, I: bits length of integer value, Q: quantization mode, O: Overflow mode
 - Q is default to "Truncation to minus infinity",
 - O is default to "Wrap around".

Number Representation

- **Example**: ap_fixed<8,4>
 - W = 8, I = 4
 - 8 bits variable, 4 bits representing the integer, 4 bits representing fractional number.

o (-1*2**3) + 2**1 + 2**0 + 2**(-2)

Lab 1: Baseline implementation

- Given $\sin(1^\circ) = 0.01745$
- Using rotation to calculate
 - $\circ ~\sin(heta), heta \in [1:89]$
- Implementation in HLS and generate the report
- Compare the solution with results from standard library
- Python code for your reference

```
t = 1
init = np.array([[1],[0]])

def sincos(theta):
   temp = init
   for i in range(theta):
       temp = rotate(t, temp)

   return temp
sincos(69)
```

Lab 2: Implement CORDIC

- Implement a function to calculate "sin" and "cos" in HLS using CORDIC
 - \circ Calculate $\sin(heta), heta \in [1:89]$
- Generate Report, and compare with Lab 1
 - Resource consumption, Latency, Accuracy
- Change "data_t" to floating point or fixed point
 - Comparing the accuracy and resource consumption