
Generative Deep Learning

Prof. Kuan-Ting Lai

2020/5/12

DeepFake (Intro)

https://www.youtube.com/watch?v=T76bK2t2r8g

Generative Recurrent Networks

• Douglas Eck (2002), Music Generation using LSTM

• Alex Graves, “Generating Sequences With Recurrent Neural
Networks,” arXiv (2013), https://arxiv.org/abs/1308.0850.

https://arxiv.org/abs/1308.0850

Text Generation with LSTM

Sampling Strategy

• Greedy sampling: select the one with highest possibility

• Stochastic sampling

• More randomness -> more surprises

Temperature

• Reweighting a probability distribution

import numpy as np
def reweight_distribution(original_distribution, temperature=0.5):

distribution = np.log(original_distribution) / temperature
distribution = np.exp(distribution)
return distribution / np.sum(distribution)

Higher Temperature = More Randomness

Generating Text of Nietzsche

• That which does not kill us makes us stronger.

• Man is the cruelest animal.

• Sometimes people don’t want to hear the truth
because they don’t want their illusions
destroyed.

• The true man wants two things: danger and
play. For that reason he wants woman, as the
most dangerous plaything.

Character-level LSTM Text Generation

• Download training data

• Things to note:
− At least 20 epochs are required before the generated text starts sounding coherent.
− If you try this script on new data, make sure your corpus
− has at least ~100k characters. ~1M is better.

import keras
import numpy as np

path = keras.utils.get_file(
'nietzsche.txt',
origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt')

text = open(path).read().lower()
print('Corpus length:', len(text))

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lstm.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.1-text-generation-with-lstm.ipynb

Convert Characters into Indices

• 57 unique characters in the data

chars = sorted(list(set(text)))
print('total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))

Vectorizing Sequences of Characters

Building the Network

from keras import layers
model = keras.models.Sequential()
model.add(layers.LSTM(128, input_shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)

Training & Sampling the Language Model

1. Drawing from the model a probability distribution over the
next character given the text available

2. Reweighting the distribution to a certain "temperature"

3. Sampling the next character at random according to the
reweighted distribution

4. Adding the new character at the end of the available text

Sampling Next Characters

def sample(preds, temperature=1.0):
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)

Text-generation Loop

Text-generation Loop (Cont’d)

Results of Epoch 60
Epoch 60/60
199936/200285 [============================>.] - ETA: 0s - loss: 1.2384
----- Generating text after Epoch: 59
----- diversity: 0.2
----- Generating with seed: "ange an opinion about any one, we charge"
ange an opinion about any one, we charger and the sense of the factity of the sense of the sense of the
continuation of the sense of the sense of the heart and superstitions, and in the sense of the sense of the
most spirit of the sense of the sense of the sense of the most portentous and as the sense of the sense of the
sense of the sense of the heart and self-distrust of the sense of the sense of the sense of the sense of the
sense of
----- diversity: 0.5
----- Generating with seed: "ange an opinion about any one, we charge"
ange an opinion about any one, we charges and contempleting and self-delight and in the sensive reports in
the portent and morality of the sense of a fainh purpose of the effective century and that struckon and be
conceptions and disposition of them as the sense of the fact that is the sense. the most foreign and the best
and
who has almost science in the people more secret to the survivaling some man the belief in the other hand

Deep Dream

Implementing DeepDream in Keras

Configuring DeepDream

Defining the Loss

Gradient-ascent Process

DeepDream Process: Scaling and Detail Reinjection

Running Gradient Ascent over Different Successive
Scales

Neural Style Transfer

• Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural
Algorithm of Artistic Style,” arXiv (2015), https://arxiv.org/abs/1508.06576 .

https://arxiv.org/abs/1508.06576

Content Loss + Style Loss

• Using pre-trained model (VGG)

• Content Loss

• The style representations simply compute the correlations between
different convolution layers, correlation is calculated by Gram matrix

https://d2l.ai/chapter_computer-vision/neural-style.html

https://d2l.ai/chapter_computer-vision/neural-style.html

Example

• https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.3-neural-style-transfer.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.3-neural-style-transfer.ipynb

Generating Images with Variational Auto-encoder

The Smile Vector

Auto-encoder

• Learn compressed representation of input x

Variational Auto-encoder

• Assume images are generated by a statistical process

• Randomness of this process is considered during encoding and decoding
https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.4-generating-images-with-vaes.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.4-generating-images-with-vaes.ipynb

Pseudo Code of Encode and Decoder

Encode the input into a mean and variance parameter
z_mean, z_log_variance = encoder(input_img)

Draw a latent point using a small random epsilon
z = z_mean + exp(z_log_variance) * epsilon

Then decode z back to an image
reconstructed_img = decoder(z)

Instantiate a model
model = Model(input_img, reconstructed_img)

Then train the model using 2 losses:
a reconstruction loss and a regularization loss

import keras
from keras import layers
from keras import backend as K
from keras.models import Model
import numpy as np

img_shape = (28, 28, 1)
batch_size = 16
latent_dim = 2 # Dimensionality of the latent space: a plane

input_img = keras.Input(shape=img_shape)

x = layers.Conv2D(32, 3, padding='same', activation='relu')(input_img)
x = layers.Conv2D(64, 3, padding='same', activation='relu', strides=(2, 2))(x)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(x)
x = layers.Conv2D(64, 3, padding='same', activation='relu')(x)
shape_before_flattening = K.int_shape(x)

x = layers.Flatten()(x)
x = layers.Dense(32, activation='relu')(x)

z_mean = layers.Dense(latent_dim)(x)
z_log_var = layers.Dense(latent_dim)(x)

Encoder

Sampling

• In Keras, everything needs to be a layer, so code that isn't part of a built-
in layer should be wrapped in a Lambda (or else, in a custom layer).

def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),

mean=0., stddev=1.)
return z_mean + K.exp(z_log_var) * epsilon

z = layers.Lambda(sampling)([z_mean, z_log_var])

Decoder

This is the input where we will feed `z`.
decoder_input = layers.Input(K.int_shape(z)[1:])

Upsample to the correct number of units
x = layers.Dense(np.prod(shape_before_flattening[1:]), activation='relu')(decoder_input)

Reshape into an image of the same shape as before our last `Flatten` layer
x = layers.Reshape(shape_before_flattening[1:])(x)

We then apply then reverse operation to the initial stack of convolution layers:
a `Conv2DTranspose` layers with corresponding parameters.
x = layers.Conv2DTranspose(32, 3, padding='same', activation='relu', strides=(2, 2))(x)
x = layers.Conv2D(1, 3, padding='same', activation='sigmoid')(x)

This is our decoder model.
decoder = Model(decoder_input, x)

We then apply it to `z` to recover the decoded `z`.
z_decoded = decoder(z)

class CustomVariationalLayer(keras.layers.Layer):

def vae_loss(self, x, z_decoded):
x = K.flatten(x)
z_decoded = K.flatten(z_decoded)
xent_loss = keras.metrics.binary_crossentropy(x, z_decoded)
kl_loss = -5e-4 * K.mean(

1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)

def call(self, inputs):
x = inputs[0]
z_decoded = inputs[1]
loss = self.vae_loss(x, z_decoded)
self.add_loss(loss, inputs=inputs)
We don't use this output.
return x

We call our custom layer on the input and the decoded output,
to obtain the final model output.
y = CustomVariationalLayer()([input_img, z_decoded])

Training VAE

• We don’t pass target data during training (only pass x_train to the model in fit)

vae = Model(input_img, y)
vae.compile(optimizer='rmsprop', loss=None)
vae.summary()

Train the VAE on MNIST digits
(x_train, _), (x_test, y_test) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape + (1,))

vae.fit(x=x_train, y=None, shuffle=True, epochs=10, batch_size=batch_size,
validation_data=(x_test, None))

Use Decoder to Turn Latent Vectors into Images
import matplotlib.pyplot as plt
from scipy.stats import norm

Display a 2D manifold of the digits
n = 15 # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
Linearly spaced coordinates on the unit square transformed via the inverse CDF (ppf) of the Gaussian
to produce values of the latent variables z, since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))

for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):

z_sample = np.array([[xi, yi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, 2)
x_decoded = decoder.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size, j * digit_size: (j + 1) * digit_size] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()

Generative Adversarial Networks (GAN)

• https://www.youtube.com/watch?v=9JpdAg6uMXs

• https://arxiv.org/abs/1701.00160

https://www.youtube.com/watch?v=9JpdAg6uMXs
https://arxiv.org/abs/1701.00160

Generative Adversarial Networks (GAN)

• Ian Goodfellow

48

Bag of Tricks for Training GANs
• Use tanh as the last activation in the generator, instead of sigmoid

• Sample points from the latent space using a normal distribution

• Stochasticity is good to induce robustness. Introducing randomness during
training helps prevent GAN to get stuck.
− Use dropout in the discriminator
− Add some random noise to the labels for the discriminator.

• Sparse gradients can hinder GAN training. There are two things that can
induce gradient sparsity: 1) max pooling operations, 2) ReLU activations.
− Use strided convolutions for downsampling
− Use LeakyReLU, which allows small negative activation values.

• In generated images, it is common to see "checkerboard artifacts" caused
by unequal coverage of the pixel space in the generator.
− Use a kernel size that is divisible by the stride size

Train a GAN of Frog

• Use frog images from CIFAR10
− 50,000 32x32 RGB images belong to 10 classes (5,000 images per class).

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.5-introduction-to-gans.ipynb

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/8.5-introduction-to-gans.ipynb

latent_dim = 32; height = 32; width = 32; channels = 3

generator_input = keras.Input(shape=(latent_dim,))

First, transform the input into a 16x16 128-channels feature map
x = layers.Dense(128 * 16 * 16)(generator_input)
x = layers.LeakyReLU()(x)
x = layers.Reshape((16, 16, 128))(x)

Then, add a convolution layer
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

Upsample to 32x32
x = layers.Conv2DTranspose(256, 4, strides=2, padding='same')(x)
x = layers.LeakyReLU()(x)

Few more conv layers
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

Produce a 32x32 1-channel feature map
x = layers.Conv2D(channels, 7, activation='tanh', padding='same')(x)
generator = keras.models.Model(generator_input, x)
generator.summary()

Generator

discriminator_input = layers.Input(shape=(height, width, channels))
x = layers.Conv2D(128, 3)(discriminator_input)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Flatten()(x)

One dropout layer - important trick!
x = layers.Dropout(0.4)(x)

Classification layer
x = layers.Dense(1, activation='sigmoid')(x)

discriminator = keras.models.Model(discriminator_input, x)
discriminator.summary()

To stabilize training, we use learning rate decay
and gradient clipping (by value) in the optimizer.
discriminator_optimizer = keras.optimizers.RMSprop(lr=0.0008, clipvalue=1.0, decay=1e-8)
discriminator.compile(optimizer=discriminator_optimizer, loss='binary_crossentropy')

Discriminator

Freeze Discriminator When Training Generator

• We’ll train discriminator and generator alternately

Set discriminator weights to non-trainable
(will only apply to the `gan` model)
discriminator.trainable = False

gan_input = keras.Input(shape=(latent_dim,))
gan_output = discriminator(generator(gan_input))
gan = keras.models.Model(gan_input, gan_output)

gan_optimizer = keras.optimizers.RMSprop(lr=0.0004, clipvalue=1.0, decay=1e-8)
gan.compile(optimizer=gan_optimizer, loss='binary_crossentropy')

Training DCGAN

• for each epoch:
−Draw random points in the latent space (random noise).

−Generate images with `generator` using this random noise.

−Mix the generated images with real ones.

−Train `discriminator` using these mixed images, with corresponding
targets, either "real" (for the real images) or "fake" (for the generated
images).

−Draw new random points in the latent space.

−Trains the generator to fool the discriminator => train `gan` using these
random vectors, with targets that all say "these are real images".

for step in range(iterations):
Sample random points in the latent space
random_latent_vectors = np.random.normal(size=(batch_size, latent_dim))
Decode them to fake images
generated_images = generator.predict(random_latent_vectors)
Combine them with real images
stop = start + batch_size
real_images = x_train[start: stop]
combined_images = np.concatenate([generated_images, real_images])
Assemble labels discriminating real from fake images
labels = np.concatenate([np.ones((batch_size, 1)), np.zeros((batch_size, 1))])
Add random noise to the labels - important trick!
labels += 0.05 * np.random.random(labels.shape)
Train the discriminator
d_loss = discriminator.train_on_batch(combined_images, labels)
sample random points in the latent space
random_latent_vectors = np.random.normal(size=(batch_size, latent_dim))
Assemble labels that say "all real images"
misleading_targets = np.zeros((batch_size, 1))
Train the generator (via the gan model,
where the discriminator weights are frozen)
a_loss = gan.train_on_batch(random_latent_vectors, misleading_targets)

Generated Frog Images

Other Advanced GAN Models

• TensorFlow Tutorial / Generative

1. Pixel-2-Pixel

2. CycleGAN

3. Adversarial FGSM

https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

Pix2Pix
• Phillip Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, 2018

https://arxiv.org/abs/1611.07004

Training Conditional GAN

• Both the generator and discriminator observe the input edge map

• Use U-Net and PatchGAN discriminator

Applications based on Pix-2-Pix

Design of Generator and Discriminator

https://www.tensorflow.org/tutorials/generative/pix2pix

Generator Discriminator

https://www.tensorflow.org/tutorials/generative/pix2pix

CycleGAN
• Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2018

• Learn to automatically “translate” an image from one into the other and vice versa

https://arxiv.org/abs/1703.10593

Model of CycloneGAN

• Two mapping functions G : X → Y and F : Y → X

• Two cycle consistency losses:
− Forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ x

− Backward cycle-consistency loss: y → F(y) → G(F(y)) ≈ y

Adversarial Attack

• Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015

• Fast Gradient Signed Method (FGSM)

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

https://arxiv.org/abs/1412.6572
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

References

• Francois Chollet, “Deep Learning with Python,” Chapter 8

• https://www.tensorflow.org/tutorials/generative/

https://www.tensorflow.org/tutorials/generative/

