PROVIDENCE PROFESSIONER PROFESSIONER PROFESSIONER

AT SAME AND A DESCRIPTION OF A DESCRIPTI

CONTATED YOU TO USE

EFFA DISTEN

MOUSEA HE EXAMINE

Marc many rooming

Chies in the last

Contract many reactions

CARACTERISTICS CONTRACTORS

The first of the large of the second

Applied Math for Machine Learning

Prof. Kuan-Ting Lai 2021/3/11

Applied Math for Machine Learning

- Linear Algebra
- Probability
- Calculus
- Optimization

Linear Algebra

• Scalar

- real numbers

• Vector (1D)

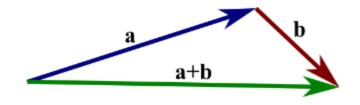
– Has a magnitude & a direction

• Matrix (2D)

An array of numbers arranges in rows & columns

• Tensor (>=3D)

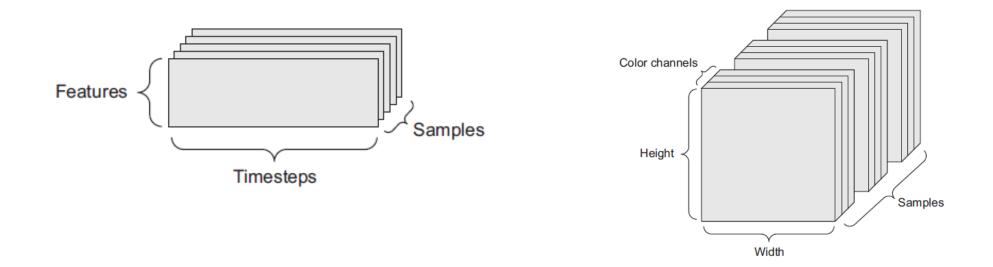
– Multi-dimensional arrays of numbers



$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Real-world examples of Data Tensors

- Timeseries Data 3D (samples, timesteps, features)
- Images 4D (samples, height, width, channels)
- Video 5D (samples, frames, height, width, channels)



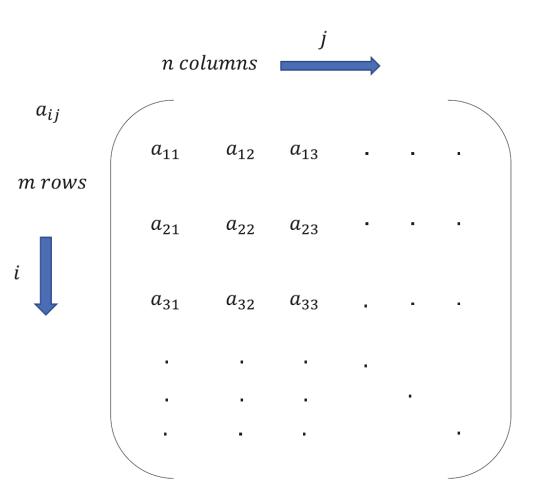
Vector Dimension vs. Tensor Dimension

- The number of data in a vector is also called "dimension"
- In deep learning , the dimension of Tensor is also called "rank"
- Matrix = 2d array = 2d tensor = rank 2 tensor

Matrix

• Define a matrix with m rows and n columns:

 $A_{m \times n} \in \mathbb{R}^{m \times n}$



Matrix Operations

Addition and Subtraction

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \quad A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

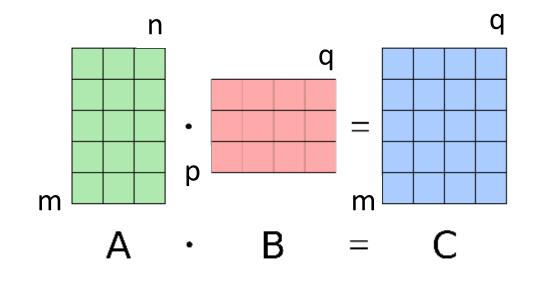
$$A - B = \begin{bmatrix} 1 - 5 & 2 - 6 \\ 3 - 7 & 4 - 8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Matrix Multiplication

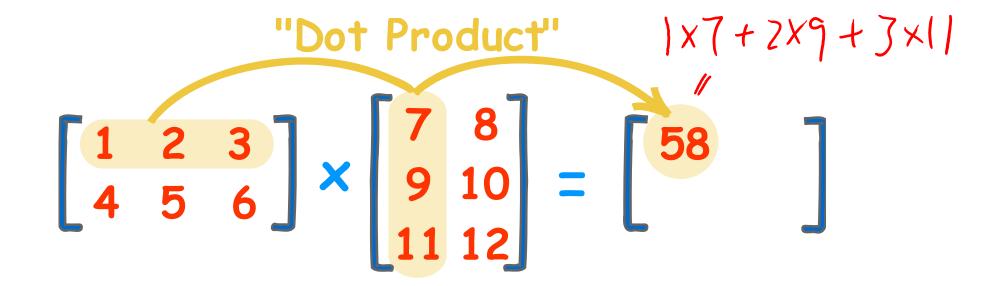
- Two matrices A and B, where $A \in \mathbb{R}^{m \times n}$ $B \in \mathbb{R}^{p \times q}$
- The columns of A must be equal to the rows of B, i.e. n == p

• A * B = C, where
$$C \in \mathbb{R}^{m \times q}$$

•
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

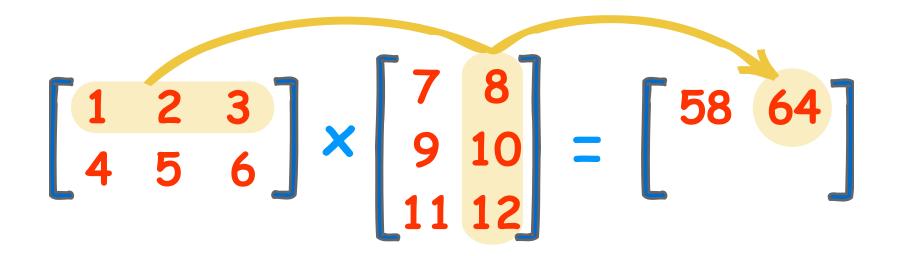


Example of Matrix Multiplication (3-1)



https://www.mathsisfun.com/algebra/matrix-multiplying.html

Example of Matrix Multiplication (3-2)



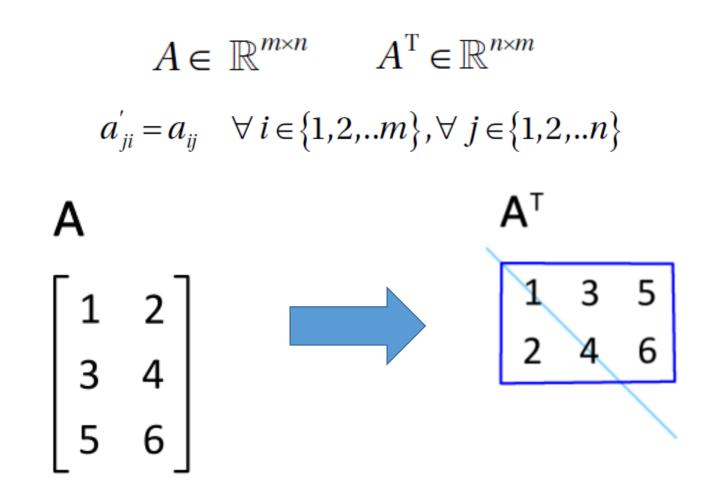
https://www.mathsisfun.com/algebra/matrix-multiplying.html

Example of Matrix Multiplication (3-3)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix} \checkmark$$

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Matrix Transpose

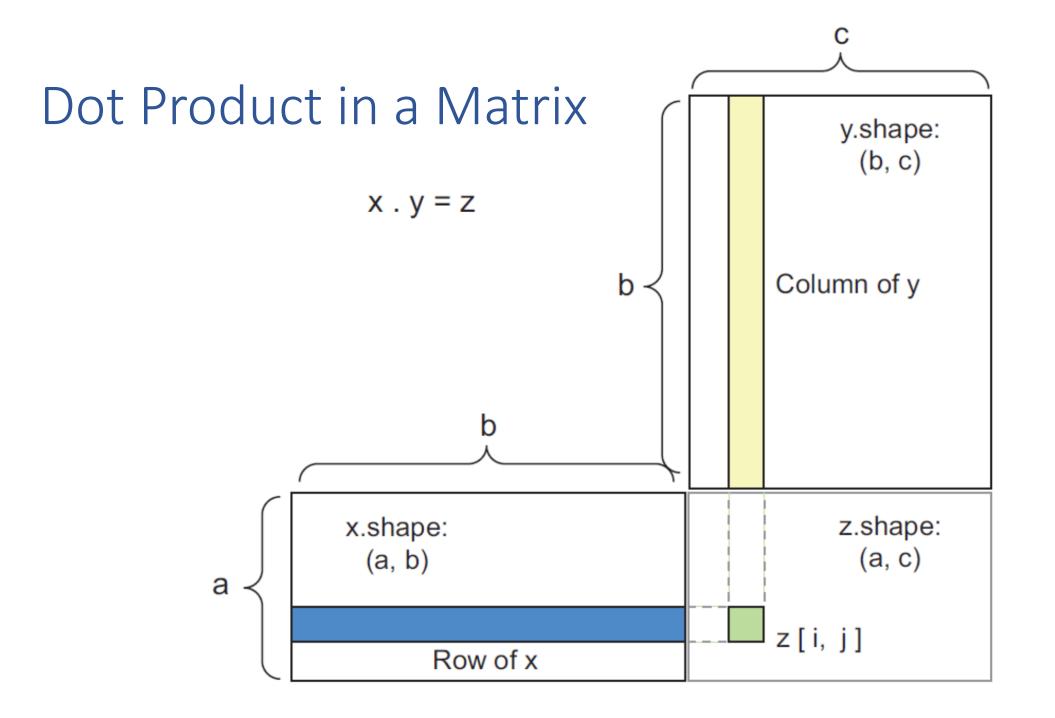


Dot Product

- Dot product of two vectors become a scalar
- Inner product is a generalization of the dot product
- Notation: $v_1 \cdot v_2$ or $v_1^T v_2$

$$v_{1} = \begin{bmatrix} v_{11} \\ v_{12} \\ \vdots \\ v_{1n} \end{bmatrix} \stackrel{v_{21}}{\longleftrightarrow} \begin{bmatrix} v_{21} \\ v_{22} \\ \vdots \\ v_{2} = \begin{bmatrix} v_{11} \\ v_{22} \\ \vdots \\ v_{2} \end{bmatrix} \qquad v_{1} \cdot v_{2} = v_{1}^{T} v_{2} = v_{2}^{T} v_{1} = v_{11} v_{21} + v_{12} v_{22} + \ldots + v_{1n} v_{2n} = \sum_{k=1}^{n} v_{1k} v_{2k}$$

$$v_{1} \cdot v_{2} = v_{1}^{T} v_{2} = v_{2}^{T} v_{1} = v_{11} v_{21} + v_{12} v_{22} + \ldots + v_{1n} v_{2n} = \sum_{k=1}^{n} v_{1k} v_{2k}$$



Outer Product

$$\mathbf{u} \otimes \mathbf{v} = \mathbf{A} = \begin{bmatrix} u_1 v_1 & u_1 v_2 & \dots & u_1 v_n \\ u_2 v_1 & u_2 v_2 & \dots & u_2 v_n \\ \vdots & \vdots & \ddots & \vdots \\ u_m v_1 & u_m v_2 & \dots & u_m v_n \end{bmatrix}$$

Or in index notation:

$$(\mathbf{u}\otimes\mathbf{v})_{ij}=u_iv_j$$

https://en.wikipedia.org/wiki/Outer_product

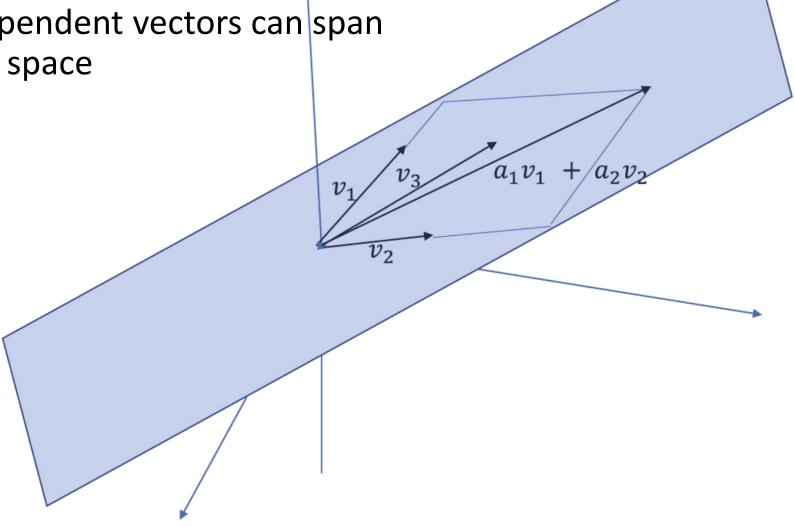
Linear Independence

- A vector is **linearly dependent** on other vectors if it can be expressed as the linear combination of other vectors $\sqrt{=} G \sqrt{1+b} \sqrt{2}$
- A set of vectors v_1, v_2, \dots, v_n is **linearly independent** if $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$ implies all $a_i = 0, \forall i \in \{1, 2, \dots, n\}$

$$\begin{bmatrix} v_1 v_2 \dots v_n \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_n \end{bmatrix} = 0 \text{ where } v_i \in \mathbb{R}^{m \times 1} \forall i \in \{1, 2, \dots, n\}, \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{R}^{n \times 1}$$

Span the Vector Space

• *n* linearly independent vectors can span *n*-dimensional space



Rank of a Matrix

• Rank is:

The number of linearly independent row or column vectors
The dimension of the vector space generated by its columns

- Row rank = Column rank
- Example: $A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$ Row-echelon form $\begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$

Identity Matrix I

- Any vector or matrix multiplied by I remains unchanged
- For a matrix A, AI = IA = A

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3} \qquad Iv = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Inverse of a Matrix

- The product of a square matrix A and its inverse matrix A^{-1} produces the identity matrix I
- $\bullet AA^{-1} = A^{-1}A = I$
- Inverse matrix is square, but not all square matrices has inverses

Pseudo Inverse

- Non-square matrix and have left-inverse or right-inverse matrix
- Example:

 $Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n$

- Create a square matrix $A^T A$

$$A^T A x = A^T b$$

– Multiplied both sides by inverse matrix $(A^T A)^{-1}$

 $x = (A^T A)^{-1} A^T b$

 $-(A^{T}A)^{-1}A^{T}$ is the pseudo inverse function

Norm

- Norm is a measure of a vector's magnitude
- $l_2 \text{ norm}$ $\|x\|_2 = \left(|x_1|^2 + |x_2|^2 + \dots + |x_n|^2\right)^{1/2} = (x \cdot x)^{1/2} = (x^T x)^{1/2}$

•
$$l_1$$
 norm $||x||_1 = |x_1| + |x_2| + \ldots + |x_n|$

•
$$l_p$$
 norm $(|x_1|^p + |x_2|^p + ... + |x_n|^p)^{1/p}$

• l_∞ norm

$$\lim_{p \to \infty} \|x\|_{p} = \lim_{p \to \infty} \left(|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p} \right)^{1/p} = max(x_{1}, x_{2}, \dots, x_{n})$$

Eigen Vectors

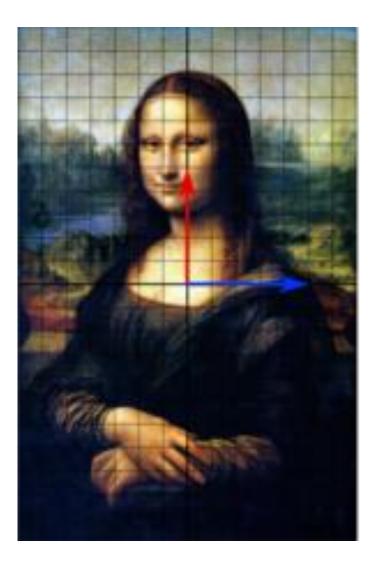
 Eigenvector is a non-zero vector that changed by only a scalar factor λ when linear transform A is applied to:

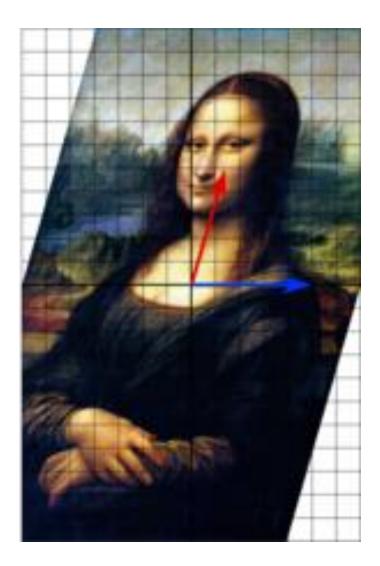
 $Ax = \lambda x, A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$

- x are Eigenvectors and λ are Eigenvalues
- One of the most important concepts in machine learning, ex:
 - Principle Component Analysis (PCA)
 - Eigenvector centrality
 - PageRank

Example: Shear Mapping

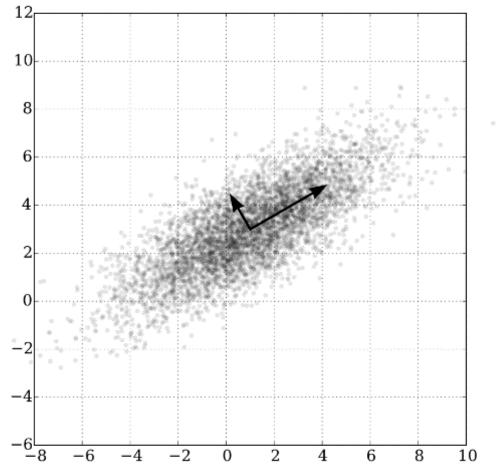
• Horizontal axis is the Eigenvector





Principle Component Analysis (PCA)

• Eigenvector of Covariance Matrix



https://en.wikipedia.org/wiki/Principal component analysis

NumPy for Linear Algebra

- NumPy is the fundamental package for scientific computing with Python. It contains among other things:
 - -a powerful N-dimensional array object
 - -sophisticated (broadcasting) functions
 - -tools for integrating C/C++ and Fortran code
 - –useful linear algebra, Fourier transform, and random number capabilities

Create Tensors

Scalars (OD tensors) Vectors (1D tensors)

>>> X

1

Matrices (2D tensors)

>>> import numpy as np >> x = np.array(12)>>> x array(12) >>> x.ndim 0

>>> x = np.array([12, 3, 6, 14])>>> x = np.array([[5, 78, 2, 34, 0], [6, 79, 3, 35, 1],[7, 80, 4, 36, 2]]) array([12, 3, 6, 14]) >>> x.ndim >>> x.ndim 2

Create 3D Tensor

```
>>> x = np.array([[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
                  [[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
                  [[5, 78, 2, 34, 0],
                  [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]])
>>> x.ndim
3
```

Attributes of a Numpy Tensor

• Number of axes (dimensions, rank)

- x.ndim

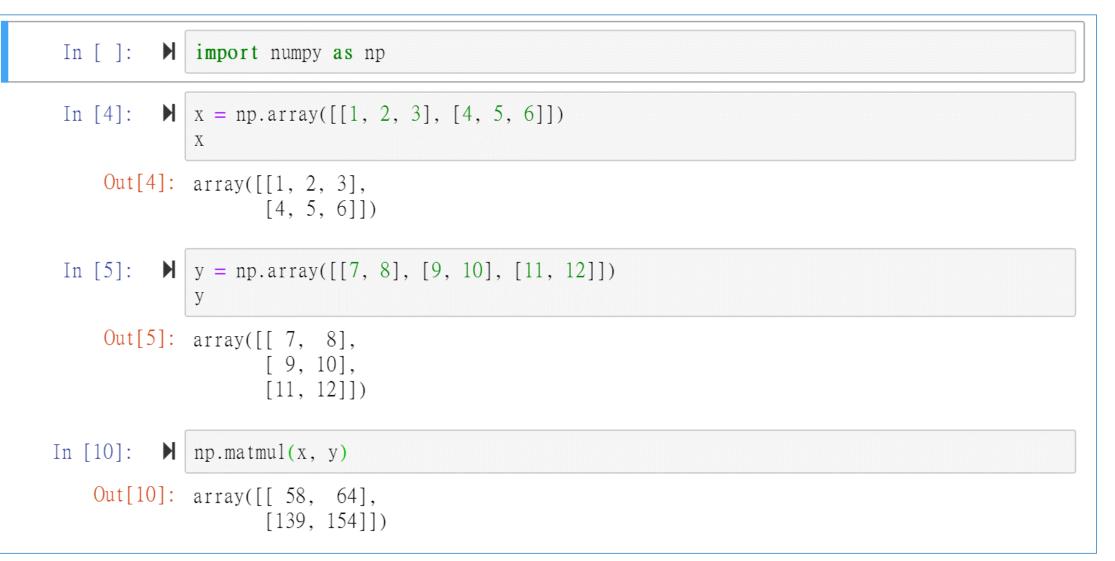
• Shape

- This is a tuple of integers showing how many data the tensor has along each axis

• Data type

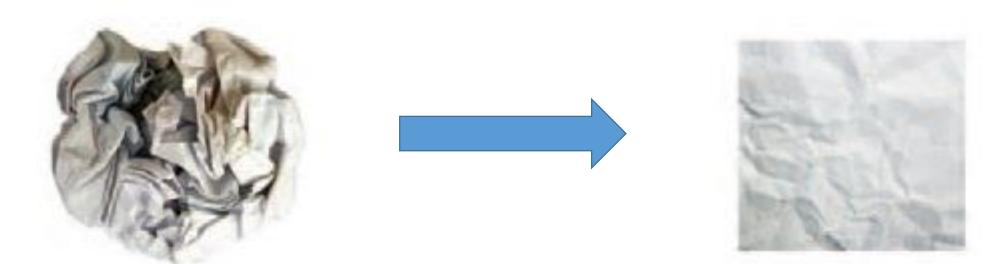
- uint8, float32 or float64

Numpy Multiplication



Unfolding the Manifold

- Tensor operations are complex geometric transformation in highdimensional space
 - Dimension reduction



Basics of Probability

Three Axioms of Probability

- Given an Event E in a sample space S, $S = \bigcup_{i=1}^{N} E_i$
- First axiom

 $-P(E) \in \mathbb{R}, 0 \le P(E) \le 1$

Second axiom

$$-P(S)=1$$

• Third axiom

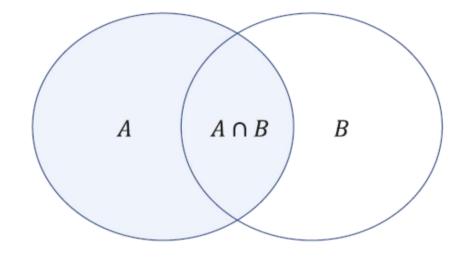
- Additivity, any countable sequence of mutually exclusive events E_i

$$-P(\bigcup_{i=1}^{n} E_i) = P(E_1) + P(E_2) + \dots + P(E_n) = \sum_{i=1}^{n} P(E_i)$$

Union, Intersection, and Conditional Probability

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cap B)$ is simplified as P(AB)
- Conditional Probability P(A|B), the probability of event A given B has occurred

$$-P(A|B) = P\left(\frac{AB}{B}\right)$$
$$-P(AB) = P(A|B)P(B) = P(B|A)P(A)$$



Chain Rule of Probability

• The joint probability can be expressed as chain rule

$$P(A_1A_2A_3...A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1A_2)....P(A_n/A_1A_2..A_{(n-1)})$$

Mutually Exclusive

- P(AB) = 0
- $P(A \cup B) = P(A) + P(B)$

Independence of Events

 Two events A and B are said to be independent if the probability of their intersection is equal to the product of their individual probabilities

$$-P(AB) = P(A)P(B)$$
$$-P(A|B) = P(A)$$

Bayes Rule

$$\begin{array}{c}
(\text{Training Data})\\
\text{Heature closs(Label)}\\
\text{Heature closs(Label)}\\
\text{Heature closs(Label)}\\
P(A|B) = \frac{P(B|A)P(A)}{P(B)} \xrightarrow{P(B|A)P(A)}{P(B)}\\
\text{Class features Fouries}\\
\text{Froof:}\\
\text{Remember } P(A|B) = P\left(\frac{AB}{B}\right)\\
\text{So } P(AB) = P(A|B)P(B) = P(B|A)P(A)\\
\text{Then Bayes } P(A|B) = P(B|A)P(A)P(B)
\end{array}$$

Naïve Bayes Classifier

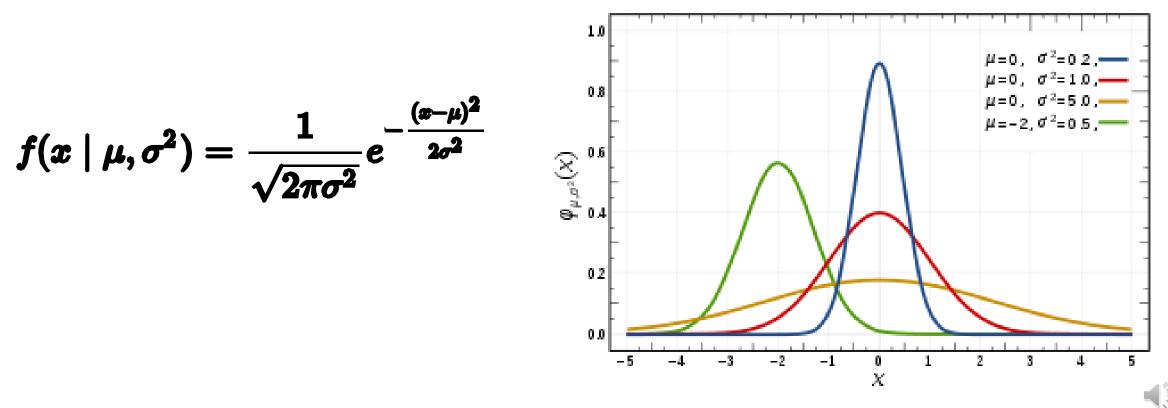
$$p(C_k \mid \mathbf{x}) = rac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
 $p(C_k \mid x_1, \dots, x_n)$
 $p(C_k \mid x_1, \dots, x_n)$
 $p(C_k, x_1, \dots, x_n) = p(x_1, \dots, x_n, C_k)$
 $= p(x_1 \mid x_2, \dots, x_n, C_k) \ p(x_2, \dots, x_n, C_k) \ p(x_2 \mid x_3, \dots, x_n, C_k) \ p(x_3, \dots, x_n, C_k)$
 $= \dots$
 $= p(x_1 \mid x_2, \dots, x_n, C_k) \ p(x_2 \mid x_3, \dots, x_n, C_k) \cdots \ p(x_{n-1} \mid x_n, C_k) \ p(x_n \mid C_k) \ p(C_k)$

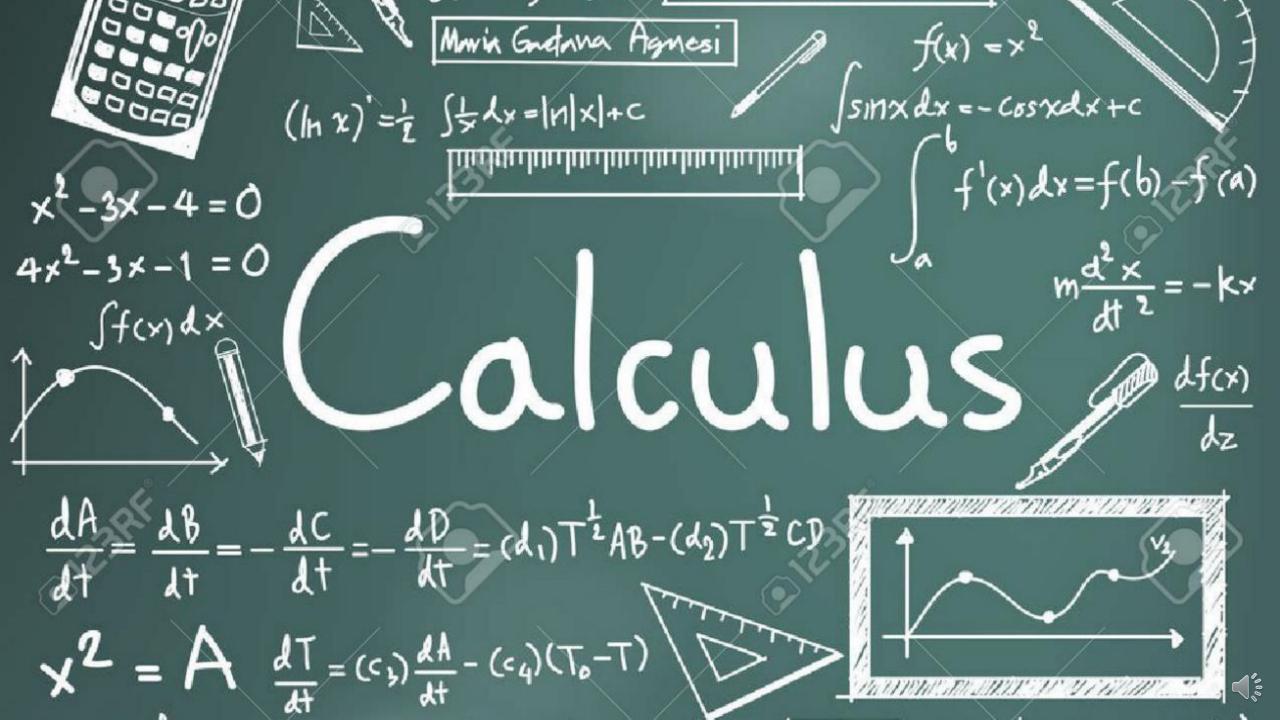
Naïve = Assume All Features Independent

$$egin{aligned} p(x_i \mid x_{i+1}, \dots, x_n, C_k) &= p(x_i \mid C_k) \ &oldsymbol{v} \ &oldsymbol{v} \ &oldsymbol{v} \ p(C_k \mid x_1, \dots, x_n) \propto p(C_k, x_1, \dots, x_n) \ &= p(C_k) \ p(x_1 \mid C_k) \ p(x_2 \mid C_k) \ p(x_3 \mid C_k) \ \cdots \ &= p(C_k) \prod_{i=1}^n p(x_i \mid C_k) \,, \end{aligned}$$

Normal (Gaussian) Distribution

- One of the most important distributions
- Central limit theorem
 - Averages of samples of observations of random variables independently drawn from independent distributions converge to the normal distribution





Differentiation

$$\frac{df}{dt} = \lim_{\substack{h \to 0 \\ \infty}} \frac{f(t+h) - f(t)}{h}$$

$$OR$$

$$\frac{df}{dt} = \lim_{\substack{h \to 0}} \frac{f(t+h) - f(t-h)}{2h}$$

Derivatives of Basic Function $\frac{dy}{dx}$

 $y = x^n \rightarrow \frac{dy}{dx} = nx^{n-1} \frac{d}{dx} \frac{d}{dx} = \frac{-1}{x^2}$

 $y = e^{x} \rightarrow \frac{dy}{dx} = e^{x}$

 $y = ln \times \rightarrow y' = \frac{1}{\times}$

Gradient of a Function

- Gradient is a multi-variable generalization of the derivative
- Apply partial derivatives

$$\nabla f = \left[\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \dots \frac{\partial f}{\partial x_n}\right]^T$$

• Example

$$f(x, y, z) = x + y^{2} + z^{3}$$

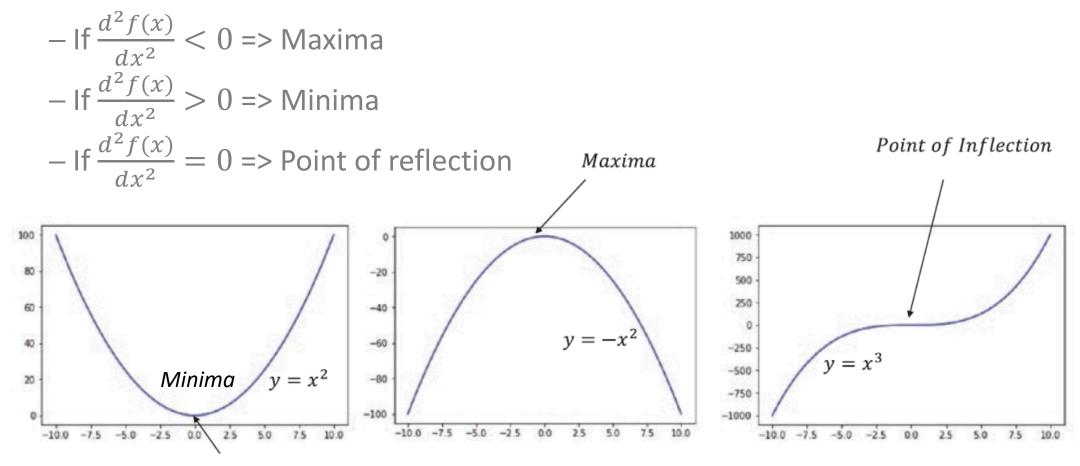
$$\nabla f = 1 \times 2y \times 3z^{2}$$

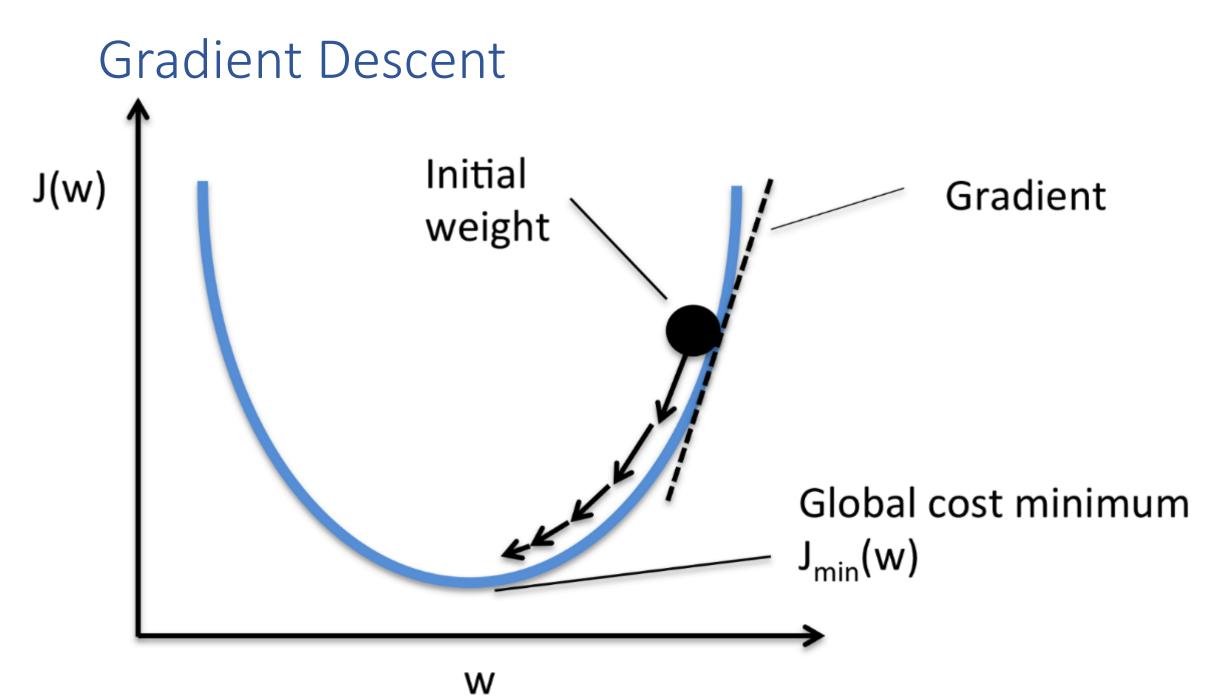
Chain Rule

 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $rac{d^2y}{dx^2} = rac{d^2y}{du^2} igg(rac{du}{dx}igg)^2 + rac{dy}{du} rac{d^2u}{dx^2}$ $rac{d^3y}{dx^3} = rac{d^3y}{du^3} \left(rac{du}{dx}
ight)^3 + 3 rac{d^2y}{du^2} rac{du}{dx} rac{d^2u}{dx^2} + rac{dy}{du} rac{d^3u}{dx^3}$ $\frac{d^4y}{dx^4} = \frac{d^4y}{du^4} \left(\frac{du}{dx}\right)^4 + 6 \, \frac{d^3y}{du^3} \left(\frac{du}{dx}\right)^2 \frac{d^2u}{dx^2} + \frac{d^2y}{du^2} \left(4 \, \frac{du}{dx} \frac{d^3u}{dx^3} + 3 \left(\frac{d^2u}{dx^2}\right)^2\right) + \frac{dy}{du} \frac{d^4u}{dx^4}.$

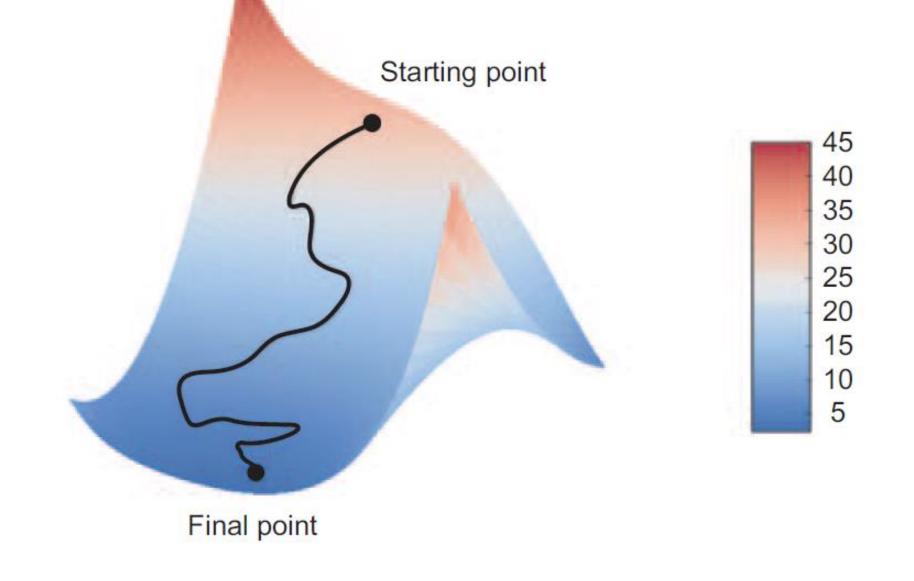
Maxima and Minima for Univariate Function

• If $\frac{df(x)}{dx} = 0$, it's a minima or a maxima point, then we study the second derivative:

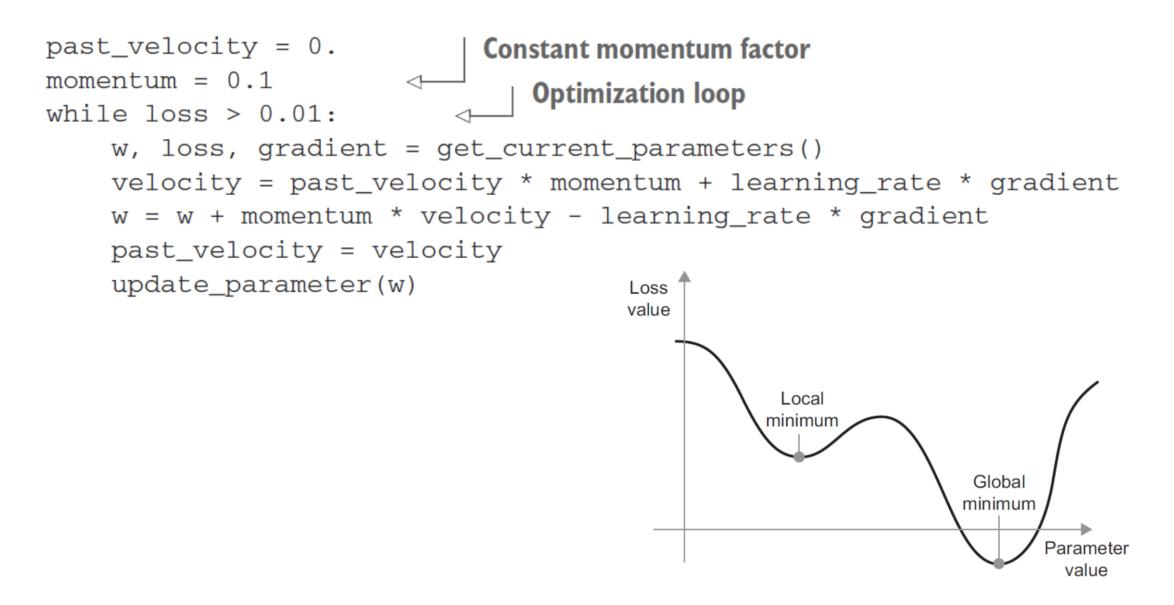




Gradient Descent along a 2D Surface



Avoid Local Minimum using Momentum



Optimization

The standard form of a continuous optimization problem is^[1]

f(x)f(x)f(x)f(x)f(x) $g_i(x) \le 0, \quad i = 1, \dots, m$ $h_j(x) = 0, \quad j = 1, \dots, p$

where

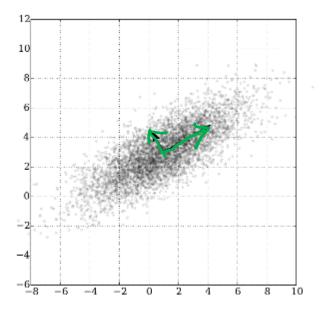
- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function to be minimized over the *n*-variable vector x,
- $g_i(x) \leq 0$ are called inequality constraints
- $h_j(x) = 0$ are called equality constraints, and
- $m \ge 0$ and $p \ge 0$.

Principle Component Analysis (PCA)

- Assumptions
 - Linearity
 - Mean and Variance are sufficient statistics
 - The principal components are orthogonal

max. Cov(y, y)s.b.t. $W^TW = I$

 $y = W^T X$



Principle Component Analysis (PCA)

$$\max_{x, y} \operatorname{cov}(\mathbf{Y}, \mathbf{Y})$$

$$s. \tilde{b}. t \quad \mathbf{W}^{T} \mathbf{W} = \mathbf{I}$$

$$\bigvee_{y}^{T} \left\{ = \operatorname{Cov}(\mathbf{Y}, \mathbf{Y}) + \lambda(\mathbf{W}^{T} \mathbf{W} - \mathbf{I}) \quad (\operatorname{cov}(\mathbf{X}, \mathbf{X})) \right\}$$

$$\operatorname{Cov}(\mathbf{Y}, \mathbf{Y}) = \frac{1}{N-1} \left((\mathbf{Y} - My) = \frac{1}{N-1} \left((\mathbf{W}^{T} \mathbf{X} - \mathbf{W}^{T} \mathbf{M} \mathbf{X})^{T} (\mathbf{W}^{T} \mathbf{X} - \mathbf{W}^{T} \mathbf{M} \mathbf{X}) \right) = W I_{X} W^{T}$$

$$\frac{df}{dW} = 0 \quad (\mathbf{W} \sum \mathbf{X} W^{T} + \lambda(W^{T} W - \mathbf{I}))$$

$$\implies \geq \sum W + 2\lambda W = 0 \implies \sum X W = \lambda W_{W}$$

References

- Francois Chollet, "Deep Learning with Python," Chapter 2 "Mathematical Building Blocks of Neural Networks"
- Santanu Pattanayak, "Pro Deep Learning with TensorFlow," Apress, 2017
- Machine Learning Cheat Sheet
- <u>https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/</u>
- <u>https://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization-How-does-it-solve-the-problem-of-overfitting-Which-regularizer-to-use-and-when</u>
- Wikipedia