PROPERTIES

PRESS PROCE STATE

CONTACTO TO TO TO

FIRE IN STER

Constant of About 1981

PUBLIC CLAIR EXAMPLE

Hare an everentie

Chies Inc. 18 - 1915

State and and an and a second second

ANAL MALADIA CRANEL CO.

The Grand of Property State of the State of Stat

# Supervised Learning

Prof. Kuan-Ting Lai 2021/3/26

COLUMN TWO IS NOT





# Iris Flower Classification

- 3 Classes
- 4 Features
- 50 samples for each class (Total: 150)
- Feature Dimension: 4
  - Sepal length (cm), sepal width, petal length, petal width



# k-Nearest Neighbors (k-NN)

- Predict input using k nearest neighbors in training set
- No need for training
- Can be used for both classification and regression



https://en.wikipedia.org/wiki/K-nearest\_neighbors\_algorithm

#### k-NN for Iris Classification

• Accuracy = 80.7%



• Accuracy = 92.7%



# Linear Classifier



# Training Linear Classifier



# Support Vector Machine (SVM)

• Choose the hyperplanes that have the largest separation (margin)



# Loss Function of SVM

• Calculate prediction errors

$$y'_{i} = W^{T}x_{i} - b \ge 1$$
  

$$y'_{i} = W^{T}x_{i} - b \le -1$$
  

$$y_{i}(W^{T}x_{i} - b) \ge 1$$
  

$$Loss = max[0, 1 - y_{i}(W^{T}x_{i} - b)]$$
  
Hinge Loss



# SVM Optimization

- Maximize the margin while reduce hinge loss
- Hinge loss:  $\max(0, 1 y_i(\vec{w} \cdot \vec{x}_i b)) x_2 \uparrow$

mīn. || W || s.b.t. max(o, | - y:(wx:-b))



#### Multi-class SVM

One-against-One
 One-against-All



https://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/

# Nonlinear Problem?

• How to separate Versicolor and Virginica?



# SVM Kernel Trick

• Project data into higher dimension and calculate the inner products



https://datascience.stackexchange.com/questions/17536/kernel-trick-explanation

# Nonlinear SVM for Iris Classification



### Logistic Regression

Sigmoid function

$$S(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

• Derivative of Sigmoid

S(x) = S(x)(1 - S(x))



https://en.wikipedia.org/wiki/Sigmoid\_function

#### **Decision Boundary**

• Binary classification with decision boundary t

$$y' = P(x, w) = P_{\theta}(x) = \frac{1}{1 + e^{-(w^T x + b)}}$$

$$y' = \begin{cases} 0, & x < t \\ 1, & x \ge t \end{cases}$$



#### Cross Entropy Loss

Loss function: cross entropy

$$\operatorname{loss} = \begin{cases} -\log(1 - P_{\theta}(x)), & \text{if } y = 0\\ -\log(P_{\theta}(x)), & \text{if } y = 1 \end{cases}$$

$$\Rightarrow L_{\theta}(\mathbf{x}) = -y \log(P_{\theta}(\mathbf{x})) + -(1-y)\log(1-P_{\theta}(\mathbf{x}))$$

$$\nabla L_W(\mathbf{x}) = -(\underline{y - P_\theta(x)})x$$



https://www.tensorflow.org/tutorials/customization/custom\_training\_walkthrough\_

#### Evaluating All Classifiers on Iris Flower Dataset

```
from sklearn.metrics import accuracy score
                                                                                           Notebook Link
    from sklearn.linear model import *
    from sklearn.svm import SVC
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn import datasets
    from sklearn.naive_bayes import GaussianNB
[2] iris = datasets.load iris()
    X = iris.data
    v = iris.target
    print('There are {} training samples in the Iris dataset'.format(len(X)))
    There are 150 training samples in the Iris dataset
[3] # Create different classifiers.
    knn = 5
    Cost = 10 # For regularization
    classifiers = {
           'KNN @ ' + str(knn): KNeighborsClassifier(knn, 'uniform'),
           'Weighted KNN @ ' + str(knn): KNeighborsClassifier(knn, 'distance'),
           'Perceptron': Perceptron(),
           'L1 logistic Regression': LogisticRegression(C=Cost, penalty='11', solver='saga', multi_class='multinomial', max_iter=10000),
           'Linear SVC': SVC(kernel='linear', C=Cost, probability=False, random state=0),
           'Naive Bayes': GaussianNB()
[4] # Training
    for index, (name, classifier) in enumerate(classifiers.items()):
           classifier.fit(X, y)
           y_pred = classifier.predict(X)
            accuracy = accuracy score(y, y pred)
           print ("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))
```

# Classifier Evaluation on Iris dataset

https://colab.research.google.com/drive/1CK7NFp6qX0XoGZWqryCDzdHKc3N4nD4J



**S** 



# Linear Regression (Least squares)

• Find a "line of best fit" that minimizes the total of the square of the errors



#### Scikit Learn Diabetes Dataset

 Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients

| Samples total  | 442              |
|----------------|------------------|
| Dimensionality | 10               |
| Features       | real,2 < x < .2  |
| Targets        | integer 25 - 346 |



https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

**Dimension Reduction of Feature Space with LASSO** 



https://towardsdatascience.com/ridgeand-lasso-regression-a-complete-guidewith-python-scikit-learn-e20e34bcbf0b

#### Ridge, Lasso and ElasticNet

• Ridge regression:  $\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$ 

• Lasso regression: 
$$\min_{w} \frac{1}{2n_{\text{samples}}} ||Xw - y||_{2}^{2} + \alpha ||w||_{1}$$

• Elastic Net: 
$$\min_{w} \frac{1}{2n_{\text{samples}}} ||Xw - y||_{2}^{2} + \alpha \rho ||w||_{1} + \frac{\alpha(1 - \rho)}{2} ||w||_{2}^{2}$$



#### Predicting Boston House Prices

Manual and a state of the state

28

0000

#### Boston House Price Dataset

- Objective: predict the median price of homes
- Small dataset with 506 samples and 13 features
  - <u>https://www.kaggle.com/c/boston-housing</u>

| 1 | crime | per capita crime rate by town.                                         | 8  | dis     | weighted mean of distances to five Boston employment centres.              |
|---|-------|------------------------------------------------------------------------|----|---------|----------------------------------------------------------------------------|
| 2 | zn    | proportion of residential land zoned for lots over 25,000 sq.ft.       | 9  | rad     | index of accessibility to radial highways.                                 |
| 3 | indus | proportion of non-retail business acres per town.                      | 10 | tax     | full-value property-tax rate per \$10,000.                                 |
| 4 | chas  | Charles River dummy variable (= 1 if tract bounds river; 0 otherwise). | 11 | ptratio | pupil-teacher ratio by town.                                               |
| 5 | nox   | nitrogen oxides concentration                                          | 12 | black   | 1000(Bk - 0.63) <sup>2</sup> where Bk is the proportion of blacks by town. |
| 6 | rm    | average number of rooms per dwelling.                                  | 13 | lstat   | lower status of the population (percent).                                  |
| 7 | age   | proportion of owner-occupied units built prior to 1940.                |    |         | 29                                                                         |

#### Normalize the Data

- the feature is centered around 0 and has a unit standard deviation
- Note that the quantities (mean, std) used for normalizing the test data are computed using the training data!

```
# Nomalize the data
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
```

```
+ 程式碼 + 文字
                            Notebook link...
\equiv
            from sklearn.metrics import mean_squared_error, mean_absolute_error
       [1]
            from sklearn.linear model import *
Q
            from sklearn import datasets
<>
            data = datasets.load_boston()
        X = data.data
y = data.target
            y_mean = y.mean()
            print ('There are {} training samples in the Boston House dataset. The average price is {}'.format(len(X), y_mean))
            There are 506 training samples in the Boston House dataset. The average price is 22.532806324110677
       [3] mean = X.mean(axis=0)
            X -= mean
            std = X.std(axis=0)
            X /= std
       [4] regressors = {
                    'Linear Regression': LinearRegression(),
                   'Ridge Regression': Ridge(alpha=.5),
                   'LASSO': Lasso(alpha=0.1),
                   'ElasticNet': ElasticNet(alpha=0.1)
       [5] # Training
            mae_list = []
            for index, (name, regressor) in enumerate(regressors.items()):
                   regressor.fit(X, y)
                   y_pred = regressor.predict(X)
                   mse = mean_absolute_error(y, y_pred)
                   print("The Mean Absolute Error for %s: %0.4f " % (name, mse))
                   mae_list.append(mse)
            The Mean Absolute Error for Linear Regression: 3.2709
            The Mean Absolute Error for Ridge Regression: 3.2691
            The Mean Absolute Error for LASSO: 3.2464
=:
            The Mean Absolute Error for ElasticNet: 3.2387
```

# Regressor Comparison

### **Comparison of Regularization Methods**

**Training Data (506 samples)** 

#### Test Data (102 samples)



https://colab.research.google.com/drive/1lgITg2vEmKfgqp7yDtrOCbWmtYuzRwIm

# Predicting House Price using DNN



https://colab.research.google.com/drive/1tJztaaOIxbk\_VuPKm8NpN7Cp\_XABqyPQ

### **Final Results**



# References

- <u>https://ml-cheatsheet.readthedocs.io/en/latest/index.html</u>
- <u>https://towardsdatascience.com/ridge-and-lasso-regression-a-complete-guide-with-python-scikit-learn-e20e34bcbf0b</u>
- <u>https://en.wikipedia.org/wiki/Naive\_Bayes\_classifier</u>